Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Warfield is active.

Publication


Featured researches published by Linda Warfield.


Nature Structural & Molecular Biology | 2007

The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex

Hung-Ta Chen; Linda Warfield; Steven Hahn

We incorporated the non-natural photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa) into the RNA polymerase II (Pol II) surface surrounding the central cleft formed by the Rpb1 and Rpb2 subunits. Photo-cross-linking of preinitiation complexes (PICs) with these Pol II derivatives and hydroxyl-radical cleavage assays revealed that the TFIIF dimerization domain interacts with the Rpb2 lobe and protrusion domains adjacent to Rpb9, while TFIIE cross-links to the Rpb1 clamp domain on the opposite side of the Pol II central cleft. Mutations in the Rpb2 lobe and protrusion domains alter both Pol II–TFIIF binding and the transcription start site, a phenotype associated with mutations in TFIIF, Rpb9 and TFIIB. Together with previous biochemical and structural studies, these findings illuminate the structural organization of the PIC and the network of protein-protein interactions involved in transcription start site selection.


Molecular and Cellular Biology | 2009

Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex.

Ying Liu; Linda Warfield; Chao Zhang; Jie Luo; Jasmina J. Allen; Walter H. Lang; Jeffrey A. Ranish; Kevan M. Shokat; Steven Hahn

ABSTRACT The Saccharomycescerevisiae kinase Bur1 is involved in coupling transcription elongation to chromatin modification, but not all important Bur1 targets in the elongation complex are known. Using a chemical genetics strategy wherein Bur1 kinase was engineered to be regulated by a specific inhibitor, we found that Bur1 phosphorylates the Spt5 C-terminal repeat domain (CTD) both in vivo and in isolated elongation complexes in vitro. Deletion of the Spt5 CTD or mutation of the Spt5 serines targeted by Bur1 reduces recruitment of the PAF complex, which functions to recruit factors involved in chromatin modification and mRNA maturation to elongating polymerase II (Pol II). Deletion of the Spt5 CTD showed the same defect in PAF recruitment as rapid inhibition of Bur1 kinase activity, and this Spt5 mutation led to a decrease in histone H3K4 trimethylation. Brief inhibition of Bur1 kinase activity in vivo also led to a significant decrease in phosphorylation of the Pol II CTD at Ser-2, showing that Bur1 also contributes to Pol II Ser-2 phosphorylation. Genetic results suggest that Bur1 is essential for growth because it targets multiple factors that play distinct roles in transcription.


Nature Structural & Molecular Biology | 2012

Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening.

Sebastian Grünberg; Linda Warfield; Steven Hahn

Yeast RNA polymerase II (Pol II) general transcription factor TFIIE and the TFIIH subunit Ssl2 (yeast ortholog of mammalian XPB) function in the transition of the preinitiation complex (PIC) to the open complex. We show that the three TFIIE winged-helix (WH) domains form a heterodimer, with the Tfa1 (TFIIEα) WH binding the Pol II clamp and the Tfa2 (TFIIEβ) tandem WH domain encircling promoter DNA that becomes single-stranded in the open complex. Ssl2 lies adjacent to TFIIE, enclosing downstream promoter DNA. Unlike previous proposals, comparison of the PIC and open-complex models strongly suggests that Ssl2 promotes DNA opening by functioning as a double-stranded-DNA translocase, feeding 15 base pairs into the Pol II cleft. Right-handed threading of DNA through the Ssl2 binding groove, combined with the fixed position of upstream promoter DNA, leads to DNA unwinding and the open state.


The EMBO Journal | 2010

Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex

Jesse Eichner; Hung-Ta Chen; Linda Warfield; Steven Hahn

The RNA polymerase (pol) II general transcription factor TFIIF functions at several steps in transcription initiation including preinitiation complex (PIC) formation and start site selection. We find that two structured TFIIF domains bind Pol II at separate locations far from the active site with the TFIIF dimerization domain on the Pol II lobe and the winged helix domain of the TFIIF small subunit Tfg2 above the Pol II protrusion where it may interact with upstream promoter DNA. Binding of the winged helix to the protrusion is PIC specific. Anchoring of these two structured TFIIF domains at separate sites locates an essential and unstructured region of Tfg2 near the Pol II active site cleft where it may interact with flexible regions of Pol II and the general factor TFIIB to promote initiation and start site selection. Consistent with this mechanism, mutations far from the enzyme active site, which alter the binding of either structured TFIIF domains to Pol II, have similar defects in transcription start site usage.


Molecular and Cellular Biology | 2010

Mechanism of Mediator Recruitment by Tandem Gcn4 Activation Domains and Three Gal11 Activator-Binding Domains

Eric Herbig; Linda Warfield; Lisa Fish; James Fishburn; Bruce A. Knutson; Beth Moorefield; Derek Pacheco; Steven Hahn

ABSTRACT Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface

Linda Warfield; Lisa M. Tuttle; Derek Pacheco; Rachel E. Klevit; Steven Hahn

Significance How transcription activators recognize their coactivator targets is a longstanding question and is important for understanding activator specificity and synergy. Most activators are not obviously related in sequence, but they recognize a common set of coactivators, raising the question of whether these interactions are sequence-specific. We show that the yeast transcription factor Gcn4 central activation domain works via a short sequence-specific motif that can be optimized to generate powerful synthetic activators. Like many natural activators, the synthetic derivatives have redundant sequence and bind the Mediator subunit Gal11 with high affinity using a “fuzzy” protein interface. Our results suggest a mechanism to explain how a subset of natural activators use redundant sequence motifs and great flexibility in the binding interface to target unrelated coactivators. Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a “fuzzy” protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.


Molecular and Cellular Biology | 2014

Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription

Ivanka Kamenova; Linda Warfield; Steven Hahn

ABSTRACT Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription.


Molecular and Cellular Biology | 2016

Function of Conserved Topological Regions within the Saccharomyces cerevisiae Basal Transcription Factor TFIIH

Linda Warfield; Jie Luo; Jeffrey A. Ranish; Steven Hahn

ABSTRACT TFIIH is a 10-subunit RNA polymerase II basal transcription factor with a dual role in DNA repair. TFIIH contains three enzymatic functions and over 30 conserved subdomains and topological regions. We systematically tested the function of these regions in three TFIIH core module subunits, i.e., Ssl1, Tfb4, and Tfb2, in the DNA translocase subunit Ssl2, and in the kinase module subunit Tfb3. Our results are consistent with previously predicted roles for the Tfb2 Hub, Ssl2 Lock, and Tfb3 Latch regions, with mutations in these elements typically having severe defects in TFIIH subunit association. We also found unexpected roles for other domains whose function had not previously been defined. First, the Ssl1-Tfb4 Ring domains are important for TFIIH assembly. Second, the Tfb2 Hub and HEAT domains have an unexpected role in association with Tfb3. Third, the Tfb3 Ring domain is important for association with many other TFIIH subunits. Fourth, a partial deletion of the Ssl1 N-terminal extension (NTE) domain inhibits TFIIH function without affecting subunit association. Finally, we used site-specific cross-linking to localize the Tfb3-binding surface on the Rad3 Arch domain. Our cross-linking results suggest that Tfb3 and Rad3 have an unusual interface, with Tfb3 binding on two opposite faces of the Arch.


Cell Reports | 2018

Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex

Lisa M. Tuttle; Derek Pacheco; Linda Warfield; Jie Luo; Jeff Ranish; Steven Hahn; Rachel E. Klevit

Summary Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements.


bioRxiv | 2017

Transcription activator-coactivator specificity is mediated by a large and dynamic fuzzy protein-protein complex

Lisa M. Tuttle; Derek Pacheco; Linda Warfield; Jie Luo; Jeff Ranish; Steven Hahn; Rachel E. Klevit

Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient activation by yeast Gcn4 requires tandem Gcn4 ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous, containing nearly all possible AD-ABD interactions. This complex forms using a dynamic fuzzy protein-protein interface where ADs use hydrophobic residues to bind hydrophobic surfaces of the ABDs in multiple orientations. This combinatorial mechanism allows individual interactions of low affinity and specificity to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators and allows great flexibility in combinations of activators that synergize to regulate genes with variable coactivator requirements.

Collaboration


Dive into the Linda Warfield's collaboration.

Top Co-Authors

Avatar

Steven Hahn

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Derek Pacheco

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Herbig

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Tuttle

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Baker

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Hung-Ta Chen

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Ivanka Kamenova

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge