Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindomar Pena is active.

Publication


Featured researches published by Lindomar Pena.


Journal of Virology | 2009

Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza

John Steel; Anice C. Lowen; Lindomar Pena; Matthew Angel; Alicia Solórzano; Randy A. Albrecht; Daniel R. Perez; Adolfo García-Sastre; Peter Palese

ABSTRACT Due to the high mortality associated with recent, widely circulating strains of H5N1 influenza virus in poultry, the recurring introduction of H5N1 viruses from birds to humans, and the difficulties in H5N1 eradication by elimination of affected flocks, an effective vaccine against HPAI (highly pathogenic avian influenza) is highly desirable. Using reverse genetics, a set of experimental live attenuated vaccine strains based on recombinant H5N1 influenza virus A/Viet Nam/1203/04 was generated. Each virus was attenuated through expression of a hemagglutinin protein in which the polybasic cleavage site had been removed. Viruses were generated which possessed a full-length NS1 or a C-terminally truncated NS1 protein of 73, 99, or 126 amino acids. Viruses with each NS genotype were combined with a PB2 polymerase gene which carried either a lysine or a glutamic acid at position 627. We predicted that glutamic acid at position 627 of PB2 would attenuate the virus in mammalian hosts, thus increasing the safety of the vaccine. All recombinant viruses grew to high titers in 10-day-old embryonated chicken eggs but were attenuated in mammalian cell culture. Induction of high levels of beta interferon by all viruses possessing truncations in the NS1 protein was demonstrated by interferon bioassay. The viruses were each found to be highly attenuated in a mouse model. Vaccination with a single dose of any virus conferred complete protection from death upon challenge with a mouse lethal virus expressing H5N1 hemagglutinin and neuraminidase proteins. In a chicken model, vaccination with a single dose of a selected virus encoding the NS1 1-99 protein completely protected chickens from lethal challenge with homologous HPAI virus A/Viet Nam/1203/04 (H5N1) and provided a high level of protection from a heterologous virus, A/egret/Egypt/01/06 (H5N1). Thus, recombinant influenza A/Viet Nam/1203/04 viruses attenuated through the introduction of mutations in the hemagglutinin, NS1, and PB2 coding regions display characteristics desirable for live attenuated vaccines and hold potential as vaccine candidates in poultry as well as in mammalian hosts.


PLOS Pathogens | 2011

Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species.

Mirco Schmolke; Balaji Manicassamy; Lindomar Pena; Troy Sutton; Rong Hai; Zsuzsanna T. Varga; Benjamin G. Hale; John Steel; Daniel R. Perez; Adolfo García-Sastre

Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20th century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.


PLOS Pathogens | 2010

Variations in the Hemagglutinin of the 2009 H1N1 Pandemic Virus: Potential for Strains with Altered Virulence Phenotype?

Jianqiang Ye; Erin M. Sorrell; Yibin Cai; Hongxia Shao; Kemin Xu; Lindomar Pena; Danielle Hickman; Haichen Song; Matthew Angel; Rafael A. Medina; Balaji Manicassamy; Adolfo García-Sastre; Daniel R. Perez

A novel, swine-origin influenza H1N1 virus (H1N1pdm) caused the first pandemic of the 21st century. This pandemic, although efficient in transmission, is mild in virulence. This atypical mild pandemic season has raised concerns regarding the potential of this virus to acquire additional virulence markers either through further adaptation or possibly by immune pressure in the human host. Using the mouse model we generated, within a single round of infection with A/California/04/09/H1N1 (Ca/04), a virus lethal in mice—herein referred to as mouse-adapted Ca/04 (ma-Ca/04). Five amino acid substitutions were found in the genome of ma-Ca/04: 3 in HA (D131E, S186P and A198E), 1 in PA (E298K) and 1 in NP (D101G). Reverse genetics analyses of these mutations indicate that all five mutations from ma-Ca/04 contributed to the lethal phenotype; however, the D131E and S186P mutations—which are also found in the 1918 and seasonal H1N1 viruses—in HA alone were sufficient to confer virulence of Ca/04 in mice. HI assays against H1N1pdm demonstrate that the D131E and S186P mutations caused minor antigenic changes and, likely, affected receptor binding. The rapid selection of ma-Ca/04 in mice suggests that a virus containing this constellation of amino acids might have already been present in Ca/04, likely as minor quasispecies.


Journal of Virology | 2011

Modifications in the Polymerase Genes of a Swine-Like Triple-Reassortant Influenza Virus To Generate Live Attenuated Vaccines against 2009 Pandemic H1N1 Viruses

Lindomar Pena; Amy L. Vincent; Jianqiang Ye; Janice R. Ciacci-Zanella; Matthew Angel; Alessio Lorusso; P. C. Gauger; Bruce H. Janke; Crystal L. Loving; Daniel R. Perez

ABSTRACT On 11 June 2009, the World Health Organization (WHO) declared that the outbreaks caused by novel swine-origin influenza A (H1N1) virus had reached pandemic proportions. The pandemic H1N1 (H1N1pdm) virus is the predominant influenza virus strain in the human population. It has also crossed the species barriers and infected turkeys and swine in several countries. Thus, the development of a vaccine that is effective in multiple animal species is urgently needed. We have previously demonstrated that the introduction of temperature-sensitive mutations into the PB2 and PB1 genes of an avian H9N2 virus, combined with the insertion of a hemagglutinin (HA) tag in PB1, resulted in an attenuated (att) vaccine backbone for both chickens and mice. Because the new pandemic strain is a triple-reassortant (TR) virus, we chose to introduce the double attenuating modifications into a swine-like TR virus isolate, A/turkey/OH/313053/04 (H3N2) (ty/04), with the goal of producing live attenuated influenza vaccines (LAIV). This genetically modified backbone had impaired polymerase activity and restricted virus growth at elevated temperatures. In vivo characterization of two H1N1 vaccine candidates generated using the ty/04 att backbone demonstrated that this vaccine is highly attenuated in mice, as indicated by the absence of signs of disease, limited replication, and minimum histopathological alterations in the respiratory tract. A single immunization with the ty/04 att-based vaccines conferred complete protection against a lethal H1N1pdm virus infection in mice. More importantly, vaccination of pigs with a ty/04 att-H1N1 vaccine candidate resulted in sterilizing immunity upon an aggressive intratracheal challenge with the 2009 H1N1 pandemic virus. Our studies highlight the safety of the ty/04 att vaccine platform and its potential as a master donor strain for the generation of live attenuated vaccines for humans and livestock.


Journal of Virology | 2010

A 27-Amino-Acid Deletion in the Neuraminidase Stalk Supports Replication of an Avian H2N2 Influenza A Virus in the Respiratory Tract of Chickens

Erin M. Sorrell; Haichen Song; Lindomar Pena; Daniel R. Perez

ABSTRACT The events and mechanisms that lead to interspecies transmission of, and host adaptation to, influenza A virus are unknown; however, both surface and internal proteins have been implicated. Our previous report highlighted the role that Japanese quail play as an intermediate host, expanding the host range of a mallard H2N2 virus, A/mallard/Potsdam/178-4/83 (H2N2), through viral adaptation. This quail-adapted virus supported transmission in quail and increased its host range to replicate and be transmitted efficiently in chickens. Here we report that of the six amino acid changes in the quail-adapted virus, a single change in the hemagglutinin (HA) was crucial for transmission in quail, while the changes in the polymerase genes favored replication at lower temperatures than those for the wild-type mallard virus. Reverse genetic analysis indicated that all adaptive mutations were necessary for transmission in chickens, further implicating quail in extending this virus to terrestrial poultry. Adaptation of the quail-adapted virus in chickens resulted in the alteration of viral tropism from intestinal shedding to shedding and transmission via the respiratory tract. Sequence analysis indicated that this chicken-adapted virus maintained all quail-adaptive mutations, as well as an additional change in the HA and, most notably, a 27-amino-acid deletion in the stalk region of neuraminidase (NA), a genotypic marker of influenza virus adaptation to chickens. This stalk deletion was shown to be responsible for the change in virus tropism from the intestine to the respiratory tract.


Journal of Virology | 2013

Influenza Viruses with Rearranged Genomes as Live-Attenuated Vaccines

Lindomar Pena; Troy Sutton; Ashok Chockalingam; Sachin Kumar; Matthew Angel; Hongxia Shao; Hongjun Chen; Weizhong Li; Daniel R. Perez

ABSTRACT H5N1 and H9N2 avian influenza virus subtypes top the World Health Organizations list for the greatest pandemic potential. Inactivated H5N1 vaccines induce limited immune responses and, in the case of live-attenuated influenza virus vaccines (LAIV), there are safety concerns regarding the possibility of reassortment between the H5 gene segment and circulating influenza viruses. In order to overcome these drawbacks, we rearranged the genome of an avian H9N2 influenza virus and expressed the entire H5 hemagglutinin open reading frame (ORF) from the segment 8 viral RNA. These vectors had reduced polymerase activities as well as viral replication in vitro and excellent safety profiles in vivo. Immunization with the dual H9-H5 influenza virus resulted in protection against lethal H5N1 challenge in mice and ferrets, and also against a potentially pandemic H9 virus. Our studies demonstrate that rearranging the influenza virus genome has great potential for the development of improved vaccines against influenza virus as well as other pathogens.


PLOS Currents | 2009

Fitness of pandemic H1N1 and seasonal influenza A viruses during co-infection: evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

Daniel R. Perez; Erin M. Sorrell; Matthew Angel; Jianqiang Ye; Danielle Hickman; Lindomar Pena; Gloria Ramirez-Nieto; Brian Kimble; Yonas Araya

On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.


Vaccine | 2012

Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs

Crystal L. Loving; Amy L. Vincent; Lindomar Pena; Daniel R. Perez

In the United States there are currently two influenza vaccine platforms approved for use in humans-conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza A virus (IAV) vaccination is designing a platform that provides protection across strains. Pandemic H1N1 (pH1N1) IAV swept the globe in 2009 and crossed the species barrier, infecting swine in several countries. Pigs are a natural host for IAV and serve as a model for evaluating immune responses following vaccination and challenge. Recently, a temperature-sensitive (ts) LAIV was developed by introducing modifications in the polymerase genes of a swine-like triple reassortant (tr) virus and when paired with pandemic HA and NA, provided sterilizing immunity upon intratracheal challenge with virulent pH1N1 virus. The utility of a ts LAIV is expanded in this report to show vaccination of pigs induced a cell-mediated immune response characterized by an increased number of antigen-specific IFN-secreting cells and expanded T cell populations when compared to pigs vaccinated with a whole inactivated virus (WIV) vaccine. Following challenge, there was a significant increase in the percentage of proliferating lymphocytes in the LAIV group compared to the WIV group following restimulation with pH1N1 in vitro. Also, there was an increase in the percentage of CD4/CD8 double-positive memory T cells in LAIV vaccinated pigs compared to WIV vaccinated pigs. Hemagglutination inhibition and serum neutralization titers were significantly higher in the LAIV-vaccinated pigs compared to the WIV vaccinated pigs following the initial dose of vaccine. Taken together, these results indicate the ts LAIV vaccine, generated from a triple reassortant IAV, elicits greater cell-mediated and humoral immune responses in pigs.


Journal of Virology | 2012

Restored PB1-F2 in the 2009 Pandemic H1N1 Influenza Virus Has Minimal Effects in Swine

Lindomar Pena; Amy L. Vincent; Crystal L. Loving; Jamie N. Henningson; Kelly M. Lager; Alessio Lorusso; Daniel R. Perez

ABSTRACT PB1-F2 is an 87- to 90-amino-acid-long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts—pigs, humans, or birds—remains largely unknown. Outbreaks of domestic pigs infected with the 2009 pandemic H1N1 influenza virus (pH1N1) have been detected worldwide. Unlike previous pandemic strains, pH1N1 viruses do not encode a functional PB1-F2 due to the presence of three stop codons resulting in premature truncation after codon 11. However, pH1N1s have the potential to acquire the full-length form of PB1-F2 through mutation or reassortment. In this study, we assessed whether restoring the full-length PB1-F2 open reading frame (ORF) in the pH1N1 background would have an effect on virus replication and virulence in pigs. Restoring the PB1-F2 ORF resulted in upregulation of viral polymerase activity at early time points in vitro and enhanced virus yields in porcine respiratory explants and in the lungs of infected pigs. There was an increase in the severity of pneumonia in pigs infected with isogenic virus expressing PB1-F2 compared to the wild-type (WT) pH1N1. The extent of microscopic pneumonia correlated with increased pulmonary levels of alpha interferon and interleukin-1β in pigs infected with pH1N1 encoding a functional PB1-F2 but only early in the infection. Together, our results indicate that PB1-F2 in the context of pH1N1 moderately modulates viral replication, lung histopathology, and local cytokine response in pigs.


Journal of General Virology | 2011

Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs.

Javier A. Cappuccio; Lindomar Pena; Marina Dibárbora; Agustina Rimondi; Pablo Piñeyro; Lucas Insarralde; María Alejandra Quiroga; Mariana Machuca; María Isabel Craig; Valeria Olivera; Ashok Chockalingam; Carlos J. Perfumo; Daniel R. Perez; Ariel Pereda

Sporadic outbreaks of human H3N2 influenza A virus (IAV) infections in swine populations have been reported in Asia, Europe and North America since 1970. In South America, serological surveys in pigs indicate that IAVs of the H3 and H1 subtypes are currently in circulation; however, neither virus isolation nor characterization has been reported. In November 2008, an outbreak of respiratory disease in pigs consistent with swine influenza virus (SIV) infection was detected in Argentina. The current study describes the clinical epidemiology, pathology, and molecular and biological characteristics of the virus. Phylogenetic analysis revealed that the virus isolate shared nucleotide identities of 96-98 % with H3N2 IAVs that circulated in humans from 2000 to 2003. Antigenically, sera from experimentally inoculated animals cross-reacted mainly with non-contemporary human-origin H3N2 influenza viruses. In an experimental infection in a commercial swine breed, the virus was of low virulence but was transmitted efficiently to contact pigs and caused severe disease when an infected animal acquired a secondary bacterial infection. This is the first report of a wholly human H3N2 IAV associated with clinical disease in pigs in South America. These studies highlight the importance of two-way transmission of IAVs and SIVs between pigs and humans, and call for enhanced influenza surveillance in the pig population worldwide.

Collaboration


Dive into the Lindomar Pena's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Angel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amy L. Vincent

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Crystal L. Loving

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alessio Lorusso

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Kelly M. Lager

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge