Lindong Weng
University of North Carolina at Charlotte
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lindong Weng.
Molecular Physics | 2013
Ning Zhang; Weizhong Li; Cong Chen; Jianguo Zuo; Lindong Weng
Molecular dynamics simulations have been performed to investigate the aqueous binary mixtures of alcohols, including methanol, ethylene glycol (EG) and glycerol of molalities ranging from 1 to 5 m at the temperatures of 273, 288 and 298 K, respectively. The primary purpose of this paper is to investigate the mechanism of water self-diffusion in water-alcohol mixtures from the point of view of hydrogen bonding. The effects of temperature and concentration on water self-diffusion coefficient are evaluated quantitatively in this work. Temperature and concentration to some extent affect the hydrogen bonding statistics and dynamics of the binary mixtures. It is shown that the self-diffusion coefficient of water molecules decreases as the concentration increases or the temperature decreases. Moreover, calculations of mean square displacements of water molecules initially with different number n of H-bonds indicate that the water self-diffusion coefficient decreases as n increases. We also studied the aggregation of alcohol molecules by the hydrophobic alkyl groups. The largest cluster size of the alkyl groups clearly increases as the concentration increases, implying the emergence of a closely connected network of water and alcohols. The clusters of water and alcohol that interacted could block the movement of water molecules in binary mixtures. These findings provide insight into the mechanisms of water self-diffusion in aqueous binary mixtures of methanol, EG and glycerol.
Physical Chemistry Chemical Physics | 2014
Lindong Weng; Gloria D. Elliott
The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation.
Cryobiology | 2014
Lindong Weng; R. Vijayaraghavan; Douglas R. MacFarlane; Gloria D. Elliott
Vitrification of sugar-based solutions plays an important role in cryopreservation, lyophilization, and the emerging field of anhydrous preservation. An understanding of the glass transition characteristics of such formulations is essential for determining an appropriate storage temperature to ensure an extended shelf life of vitrified products. To better understand the effect of salts on the glass transition temperature (T(g)) of glass-forming sugars, we investigated several data-fitting models (Fox, Gordon-Taylor and Kwei) for sugar-salt formulations using data from the literature, as well as new data generated on blends of trehalose and choline dihydrogen phosphate (CDHP). CDHP has recently been shown to have promise as a stabilizing agent for proteins and DNA. The Kwei equation, which has a specific parameter characterizing intermolecular interactions, provides good fits to the T(g) data for sugar-salt blends, and complements other commonly used models that are frequently used to model T(g) data.
Pharmaceutical Research | 2015
Lindong Weng; Gloria D. Elliott
PurposeThe present study is aimed at understanding how the interactions between sugar molecules and phosphate ions affect the glass transition temperature of their mixtures, and the implications for pharmaceutical formulations.MethodsThe glass transition temperature (Tg) and the α-relaxation temperature (Tα) of dehydrated trehalose/sodium phosphate mixtures (monobasic or dibasic) were determined by differential scanning calorimetry and dynamic mechanical analysis, respectively. Molecular dynamics simulations were also conducted to investigate the microscopic interactions between sugar molecules and phosphate ions. The hydrogen-bonding characteristics and the self-aggregation features of these mixtures were quantified and compared.ResultsThermal analysis measurements demonstrated that the addition of NaH2PO4 decreased both the glass transition temperature and the α-relaxation temperature of the dehydrated trehalose/NaH2PO4 mixture compared to trehalose alone while both Tg and Tα were increased by adding Na2HPO4 to pure trehalose. The hydrogen-bonding interactions between trehalose and HPO42− were found to be stronger than both the trehalose-trehalose hydrogen bonds and those formed between trehalose and H2PO4−. The HPO42− ions also aggregated into smaller clusters than H2PO4− ions.ConclusionsThe trehalose/Na2HPO4 mixture yielded a higher Tg than pure trehalose because marginally self-aggregated HPO42− ions established a strengthened hydrogen-bonding network with trehalose molecules. In contrast H2PO4− ions served only as plasticizers, resulting in a lower Tg of the mixtures than trehalose alone, creating large-sized ionic pockets, weakening interactions, and disrupting the original hydrogen-bonding network amongst trehalose molecules.
Scientific Reports | 2016
Lindong Weng; Shima Ziaei; Gloria D. Elliott
Dry preservation of biologics in sugar glasses is regarded as a promising alternative to conventional cryopreservation. Evidence from various studies has suggested that there is a critical range of water content beyond which the viability of preserved biologics can be greatly compromised. In this study the viability of T-cells was determined as a function of end water content after microwave-assisted drying in trehalose solutions. Hydrogen-bonding and clustering phenomena in trehalose solutions of the same moisture content were also evaluated using molecular dynamics simulation. Post-rehydration viability decreased dramatically within the range of 0.1–1 gH2O/gdw. Molecular modeling revealed that as the water content approached 0.1 gH2O/gdw the matrix formed a large interconnected trehalose skeleton with a minimal number of bound water molecules scattered in the bulk. The diffusion coefficients of trehalose oxygen atoms most distant from the glycosidic linkage fluctuated around 7.5 × 10−14 m2/s within the range of 0.02–0.1 gH2O/gdw and increased again to ~1.13 × 10−13 m2/s at 0.01 gH2O/gdw and below due to the loss of water in the free volume between trehalose molecules. These insights can guide the optimal selection of final moisture contents to advance dry preservation methods.
Cryobiology | 2010
Lindong Weng; Weizhong Li; Jianguo Zuo
Cryopreservation requires quantitatively analytical models to simulate the biophysical responses of biomaterials during cryopreservation. The Mazur model and other improved ones, such as Karlsson model concerning solutions containing cryoprotectants (CPA), are somehow precluded by some minor points, particularly, the assumption of ideal solutions. To avoid the ideal solution assumption, in this study a new method is developed to simulate water transport across cell membranes in non-ideal solutions during cooling and thawing. The comparison between osmolalities calculated by the linear freezing-point depression used in this new method and other non-ideal ones is conducted and a good agreement is achieved. In addition, in an ideal case, besides a theoretical agreement, this new approach has been validated by its numerical simulation results. Comparisons between this new approach and the traditional ones with an ideal solution assumption have been conducted based on a spherical hypothetical cell. The main results are (1) the predicted non-ideal intracellular water content is larger than the ideal results; (2) the concentration of CPA solutions is directly proportional to the deviation between the non-ideal and ideal curves. In the end, this study presents a direct description of the degree of subcooling of the protoplasm during dynamic cooling. This study demonstrates that our experimental data-based method is a valid one with clear physical interpretations, convenient expressions and a more extensive application room than traditional ones.
Journal of Physical Chemistry B | 2011
Lindong Weng; Weizhong Li; Cong Chen; Jianguo Zuo
Thermodynamic and kinetic models can provide a wealth of information on the physical response of living cells and tissues experiencing cryopreservation procedures. Both isothermal and nonisothermal models have been proposed so far, accompanied by experimental verification and cryoapplications. But the cryoprotective solution is usually assumed to be dilute and ideal in the models proposed in the literature. Additionally, few nonisothermal models are able to couple the transmembrane transport of water and cryoprotectant during cooling and warming of cells. To overcome these limitations, this study develops a whole new set of equations that can quantify the cotransport of water and cryoprotectant across cell membranes in the nondilute and nonideal solution during the freezing and thawing protocols. The new models proposed here can be simplified into ones consistent with the classic models if some specific assumptions are included. For cryobiological practice, they are applied to predict the volumetric change for imprinting control region (ICR) mouse spermatozoa and human corneal keratocytes in the freezing protocol. The new models can determine the intracellular concentration of cryoprotectant more precisely than others by abandoning the assumptions such as dilute and ideal solutions and nonpermeability of membranes to cryoprotectant. Further, the findings in this study will offer new insights into the physical response of cells undergoing cryopreservation.
Journal of Physical Chemistry B | 2015
Lindong Weng; Gloria D. Elliott
Approximately a decade ago it was observed that adding a small amount (5 wt %) of glycerol to trehalose could substantially improve the stability of enzymes stored in these glasses even though the final glass transition temperature (Tg) was reduced by ∼20 K. This finding inspired great interest in the fast dynamics of dehydrated trehalose/glycerol mixtures, leading to the observation that suppression of fast dynamics was optimal in the presence of ∼5 wt % of glycerol. It was also recognized that the fast dynamics should, in theory, be related to the fragility of these glass formers, but experimental confirmation of this hypothesis has been lacking for trehalose/glycerol mixtures or any other mixtures of this nature. In the present study a dynamic mechanical analyzer (DMA) was used to determine both the Tg and the kinetic fragility index (m) of trehalose/glycerol mixtures within the mass fraction range of 80-100 wt % of trehalose. It was found that the fragility index correlated with the mass fraction of trehalose in a nonmonotonic manner, with a local minimum between 87.5 and 95 wt % of trehalose, whereas the composition dependence of Tg was found to follow a Gordon-Taylor-like relationship, with no local minimum. The composition of 5-12.5 wt % glycerol in trehalose thus yielded a matrix that maximized the strong glass-forming contribution of glycerol, while minimizing its Tg lowering effect. This quantitative evidence supports speculation about the fragility characteristics of these mixtures that has been ongoing for the past decade. The DMA-based Tg and fragility determination method developed in this study represents a new approach for identifying optimal compositions for preservation of biologics.
Journal of Physical Chemistry B | 2014
Lindong Weng; Gloria D. Elliott
Protectants which are cell membrane permeable, such as glycerol, have been used effectively in the cryopreservation field for a number of decades, for both slow cooling and vitrification applications. In the latter case, the glass transition temperature (Tg) of the vitrification composition is key to its application, dictating the ultimate storage conditions. It has been observed that the addition of some electrolytes to glycerol, such as MgCl2, could elevate the Tg of the mixture, thus potentially providing more storage condition flexibility. The microscopic mechanisms that give rise to the Tg-enhancing behavior of these electrolytes are not yet well understood. The current study focuses on molecular dynamics simulation of glycerol mixed with a variety of metal chlorides (i.e., NaCl, KCl, MgCl2, and CaCl2), covering a temperature range that spans both the liquid and glassy states. The characteristics of the ion–dipole interactions between metal cations and hydroxyl groups of glycerol were analyzed. The interruption of the original hydrogen-bonding network among glycerol molecules by the addition of ions was also investigated in the context of hydrogen-bonding quantity and lifetime. Divalent metal cations were found to significantly increase the Tg by strengthening the interacting network in the electrolyte/glycerol mixture via strong cation–dipole attractions. In contrast, monovalent cations increased the Tg insignificantly, as the cation–dipole attraction was only slightly stronger than the original hydrogen-bonding network among glycerol molecules. The precursor of crystallization of NaCl and KCl was also observed in these compositions, potentially contributing to weak Tg-enhancing ability. The Tg-enhancing mechanisms elucidated in this study suggest a structure-enhancing role for divalent ions that could be of benefit in the design of protective formulations for biopreservation purposes.
Materials Science and Engineering: C | 2014
Lindong Weng; Gloria D. Elliott
Recently there has been considerable interest in developing sugar glasses that enable storage of biologics without refrigeration. Microfiber filter papers are good substrates for drying biologics in the presence of sugar glass-formers, providing for an even distribution of samples and an enhanced surface area for drying, but the opaqueness prevents macroscopic observation of the sample and can introduce complexities that impede physical characterization. Because drying kinetics and processing conditions can impact the relaxation dynamics (e.g., α- and β-relaxation), which can influence the efficacy of the glass as a stabilizer, methods are needed that can enable a determination of relaxation phenomena of sugar glasses in such complex environments. In this study we present a method which provides verification of the absence of crystallinity following drying on glass fiber filter paper and also enables the determination of relaxation characteristics of amorphous sugar compositions embedded within these filter substrates. Using material pockets to contain the sugar glass-embedded microfiber paper, the α-relaxation temperature, Tα, was determined as a function of the water content in trehalose and sucrose samples using Dynamic Mechanical Analysis (DMA). Results were verified by comparison with previous calorimetric and spectroscopic studies. The data also demonstrated the plasticizing effects of water, as Tα was shown to correlate with water content via a Gordon-Taylor-like relationship. Our findings validate a new approach for determining the relaxation characteristics of microfiber embedded sugar glasses, and offer new insights into the relaxation characteristics of glasses prepared by microwave-assisted drying on filter papers.