Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindsay A. Beaton-Green is active.

Publication


Featured researches published by Lindsay A. Beaton-Green.


International Journal of Radiation Biology | 2015

Evaluation of the annual Canadian biodosimetry network intercomparisons

Ruth C. Wilkins; Lindsay A. Beaton-Green; Sylvie Lachapelle; B.C. Kutzner; Catherine Ferrarotto; Vinita Chauhan; Leonora Marro; Gordon K. Livingston; Hillary Boulay Greene; Farrah Flegal

Abstract Purpose: To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response. Materials and methods: Annual intercomparisons were conducted between laboratories in the Canadian National Biological Dosimetry Response Plan. Intercomparisons were performed over a six-year period and comprised of the shipment of 10–12 irradiated, blinded blood samples for analysis by each of the participating laboratories. Dose estimates were determined by each laboratory using the dicentric chromosome assay (conventional and QuickScan scoring) and where possible the cytokinesis block micronucleus (CBMN) assay. Dose estimates were returned to the lead laboratory for evaluation and comparison. Results: Individual laboratories performed comparably from year to year with only slight fluctuations in performance. Dose estimates using the dicentric chromosome assay were accurate about 80% of the time and the QuickScan method for scoring the dicentric chromosome assay was proven to reduce the time of analysis without having a significant effect on the dose estimates. Although analysis with the CBMN assay was comparable to QuickScan scoring with respect to speed, the accuracy of the dose estimates was greatly reduced. Conclusions: Annual intercomparisons are necessary to maintain a network of laboratories for emergency response biodosimetry as they evoke confidence in their capabilities.


Cytometry Part A | 2014

Multi‐parameter dose estimations in radiation biodosimetry using the automated cytokinesis‐block micronucleus assay with imaging flow cytometry

M. A. Rodrigues; Lindsay A. Beaton-Green; B.C. Kutzner; Ruth C. Wilkins

The cytokinesis‐block micronucleus (CBMN) assay is an established technique in radiation biological dosimetry for estimating the dose to an individual by measuring the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using slide‐scoring algorithms, but an automated multiparameter method without the need of the slide‐making procedure would be advantageous to further increase throughput for application in mass casualty events. The development of the ImageStreamX (ISX) imaging flow cytometer has made it possible to adapt the CBMN assay to an automated imaging flow cytometry (FCM) method. The protocol and analysis presented in this work tailor and expand the assay to a multiparameter biodosimetry tool. Ex vivo irradiated whole blood samples were cultured, processed, and analyzed on the ISX and BNCs, MN, and mononuclear cells were imaged, identified, and enumerated automatically and simultaneously. Details on development of the method, gating strategy, and dose response curves generated for the rate of MN per BNC, percentage of mononuclear cells as well as the replication index are presented. Results indicate that adapting the CBMN assay for use in imaging FCM has produced a rapid, robust, multiparameter analysis method with higher throughput than is currently available with standard microscopy. We conclude that the ISX‐CBMN method may be an advantageous tool following a radiological event where triage biodosimetry must be performed on a large number of casualties.


Health Physics | 2016

Validation of the Cytokinesis-block Micronucleus Assay Using Imaging Flow Cytometry for High Throughput Radiation Biodosimetry.

Matthew A. Rodrigues; Lindsay A. Beaton-Green; Ruth C. Wilkins

AbstractThe cytokinesis-block micronucleus assay can be employed in triage radiation biodosimetry to determine the dose of radiation to an exposed individual by quantifying the frequency of micronuclei in binucleated lymphocyte cells. Partially automated analysis of the assay has been applied to traditional microscope-based methods, and most recently, the assay has been adapted to an automated imaging flow cytometry method. This method is able to automatically score a larger number of binucleated cells than are typically scored by microscopy. Whole blood samples were irradiated, divided into 2 mL and 200 &mgr;L aliquots, cultured for 48 h and 72 h, and processed to generate calibration curves from 0–4 Gy. To validate the method for use in radiation biodosimetry, nine separate whole blood samples were then irradiated to known doses, blinded, and processed. Results indicate that dose estimations can be determined to within ±0.5 Gy of the delivered dose after only 48 h of culture time with an initial blood volume of 200 &mgr;L. By performing the cytokinesis-block micronucleus assay using imaging flow cytometry, a significant reduction in the culture time and volume requirements is possible, which greatly increases the applicability of the assay in high throughput triage radiation biodosimetry.


Cytometry Part A | 2016

Optimized automated data analysis for the cytokinesis-block micronucleus assay using imaging flow cytometry for high throughput radiation biodosimetry

Matthew A. Rodrigues; C. E. Probst; Lindsay A. Beaton-Green; Ruth C. Wilkins

The cytokinesis‐block micronucleus (CBMN) assay is a well‐established technique that can be employed in triage radiation biodosimetry to estimate whole body doses of radiation to potentially exposed individuals through quantitation of the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using traditional microscope‐based methods and most recently has been modified for application on the ImageStreamX (ISX) imaging flow cytometer. This modification has allowed for a similar number of BNCs to be automatically scored as compared to traditional microscopy in a much shorter time period. However, the MN frequency measured was much lower than both manual and automated slide‐based methods of performing the assay. This work describes the optimized analysis template which implements newly developed functions in the IDEAS® data analysis software for the ISX that enhances specificity for BNCs and increases the frequency of scored MN. A new dose response calibration curve is presented in which the average rate of MN per BNC is of similar magnitude to those presented in the literature using automated CBMN slide scoring methods. In addition, dose estimates were generated for nine irradiated, blinded samples and were found to be within ±0.5 Gy of the delivered dose. Results demonstrate that the improved identification accuracy for MN and BNCs in the ISX‐based version of the CBMN assay will translate to increased accuracy when estimating unknown radiation doses received by exposed individuals following large‐scale radiological or nuclear emergencies.


International Journal of Radiation Biology | 2017

RENEB accident simulation exercise

B. Brzozowska; Elizabeth A. Ainsbury; Annelot Baert; Lindsay A. Beaton-Green; Leonardo Barrios; Joan Francesc Barquinero; C. Bassinet; Christina Beinke; Anett Benedek; Philip Beukes; E. Bortolin; Iwona Buraczewska; Christopher Ian Burbidge; Andrea De Amicis; Cinzia De Angelis; Sara Della Monaca; Julie Depuydt; Stefania De Sanctis; Katalin Dobos; Mercedes Moreno Domene; Inmaculada Domínguez; Eva Facco; P. Fattibene; Monika Frenzel; Octávia Monteiro Gil; Géraldine Gonon; Eric Gregoire; Gaëtan Gruel; Valeria Hadjidekova; Vasiliki I. Hatzi

Abstract Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. Results: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). Conclusions: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.


Genome Integrity | 2017

The application of imaging flow cytometry to high-throughput biodosimetry

Ruth C. Wilkins; Matthew A. Rodrigues; Lindsay A. Beaton-Green

Biodosimetry methods, including the dicentric chromosome assay, the cytokinesis.block micronucleus assay and the γH2AX marker of DNA damage are used to determine the dose of ionizing radiation. These techniques are particularly useful when physical dosimetry is absent or questioned. While these assays can be very sensitive and specific, the standard methods need to be adapted to increase sample throughput in the case of a large.scale radiological/nuclear event. Recent modifications to the microscope.based assays have resulted in some increased throughput, and a number of biodosimetry networks have been, and continue to be, established and strengthened. As the imaging flow cytometer.(IFC) is a technology that can automatically image and analyze processed blood samples for markers of radiation damage, the microscope.based biodosimetry techniques can be modified for the IFC for high.throughput biological dosimetry. Furthermore, the analysis templates can be easily shared between networked biodosimetry laboratories for increased capacity and improved standardization. This review describes recent advances in IFC methodology and their application to biodosimetry.


Radiation Protection Dosimetry | 2016

THE EFFECT OF AN OPTIMIZED IMAGING FLOW CYTOMETRY ANALYSIS TEMPLATE ON SAMPLE THROUGHPUT IN THE REDUCED CULTURE CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY

Matthew A. Rodrigues; C. E. Probst; Lindsay A. Beaton-Green; Ruth C. Wilkins

In cases of overexposure to ionizing radiation, the cytokinesis-block micronucleus (CBMN) assay can be performed in order to estimate the dose of radiation to an exposed individual. However, in the event of a large-scale radiation accident with many potentially exposed casualties, the assay must be able to generate accurate dose estimates to within ±0.5 Gy as quickly as possible. The assay has been adapted to, validated and optimized on the ImageStreamX imaging flow cytometer. The ease of running this automated version of the CBMN assay allowed investigation into the accuracy of dose estimates after reducing the volume of whole blood cultured to 200 µl and reducing the culture time to 48 h. The data analysis template used to identify binucleated lymphocyte cells (BNCs) and micronuclei (MN) has since been optimized to improve the sensitivity and specificity of BNC and MN detection. This paper presents a re-analysis of existing data using this optimized analysis template to demonstrate that dose estimations from blinded samples can be obtained to the same level of accuracy in a shorter data collection time. Here, we show that dose estimates from blinded samples were obtained to within ±0.5 Gy of the delivered dose when data collection time was reduced by 30 min at standard culture conditions and by 15 min at reduced culture conditions. Reducing data collection time while retaining the same level of accuracy in our imaging flow cytometry-based version of the CBMN assay results in higher throughput and further increases the relevancy of the CBMN assay as a radiation biodosimeter.


Methods | 2017

Foundations of identifying individual chromosomes by imaging flow cytometry with applications in radiation biodosimetry

Lindsay A. Beaton-Green; Matthew A. Rodrigues; Sylvie Lachapelle; Ruth C. Wilkins

Biodosimetry is an important tool for triage in the case of large-scale radiological or nuclear emergencies, but traditional microscope-based methods can be tedious and prone to scorer fatigue. While the dicentric chromosome assay (DCA) has been adapted for use in triage situations, it is still time-consuming to create and score slides. Recent adaptations of traditional biodosimetry assays to imaging flow cytometry (IFC) methods have dramatically increased throughput. Additionally, recent improvements in image analysis algorithms in the IFC software have resulted in improved specificity for spot counting of small events. In the IFC method for the dicentric chromosome analysis (FDCA), lymphocytes isolated from whole blood samples are cultured with PHA and Colcemid. After incubation, lymphocytes are treated with a hypotonic solution and chromosomes are isolated in suspension, labelled with a centromere marker and stained for DNA content with DRAQ5. Stained individual chromosomes are analyzed on the ImageStream®X (EMD-Millipore, Billerica, MA) and mono- and dicentric chromosome populations are identified and enumerated using advanced image processing techniques. Both the preparation of the isolated chromosome suspensions as well as the image analysis methods were fine-tuned in order to optimize the FDCA. In this paper we describe the method to identify and score centromeres in individual chromosomes by IFC and show that the FDCA method may further improve throughput for triage biodosimetry in the case of large-scale radiological or nuclear emergencies.


Methods of Molecular Biology | 2016

Quantitation of Chromosome Damage by Imaging Flow Cytometry.

Lindsay A. Beaton-Green; Ruth C. Wilkins

Biodosimetry is a method for measuring the dose of radiation to individuals using biological markers such as chromosome damage. Following mass casualty events, it is important to provide this information rapidly in order to assist with the medical management of potentially exposed casualties. Currently, the gold standard for biodosimetry is the dicentric chromosome assay, which accurately estimates the dose from the number of dicentric chromosomes in lymphocytes. To increase throughput of analysis following a large-scale mass casualty event, this assay has been adapted for use on the imaging flow cytometer. This chapter describes the methods for the identification and quantification of mono- and multicentric chromosomes using the imaging flow cytometer.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015

Evolution of the Health Canada astronaut biodosimetry program with a view toward international harmonization.

Lindsay A. Beaton-Green; Sylvie Lachapelle; Ulrich Straube; Ruth C. Wilkins

Biodosimetry of astronaut lymphocyte samples, taken prior to- and post-flight, provides an important in vivo measurement of radiation-induced damage incurred during space flight which can be included in the medical records of the astronauts. Health Canada has been developing their astronaut biodosimetry program since 2007 and since then has analyzed data from 7 astronauts. While multiple cytogenetic endpoints may be analyzed for the astronauts, the Fluorescent in situ hybridization (FISH) assay is considered to be key for detecting long-lasting stable damage. It is believed that this long-lasting damage is most likely to lead to an increased risk to the health of the astronauts during long-term flights (lasting 6 months or more). The complexity of damage that results from protracted, non-homogeneous radiation exposure, like that found in the space environment, requires a detailed scoring schematic to capture as much information as possible. To that end, this paper outlines the efforts to harmonize the manner in which Health Canadas FISH data are recorded to better facilitate the comparison of results with other international biodosimetry programs.

Collaboration


Dive into the Lindsay A. Beaton-Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farrah Flegal

Chalk River Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Barr

Canadian Nuclear Safety Commission

View shared research outputs
Researchain Logo
Decentralizing Knowledge