Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindsay Hewlett is active.

Publication


Featured researches published by Lindsay Hewlett.


Nature Cell Biology | 2006

Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains

Jaime Millán; Lindsay Hewlett; Matthew C. P. Glyn; Derek Toomre; Peter Clark; Anne J. Ridley

During inflammation, leukocytes bind to the adhesion receptors ICAM-1 and VCAM-1 on the endothelial surface before undergoing transendothelial migration, also called diapedesis. ICAM-1 is also involved in transendothelial migration, independently of its role in adhesion, but the molecular basis of this function is poorly understood. Here we demonstrate that, following clustering, apical ICAM-1 translocated to caveolin-rich membrane domains close to the ends of actin stress fibres. In these F-actin-rich areas, ICAM-1 was internalized and transcytosed to the basal plasma membrane through caveolae. Human T-lymphocytes extended pseudopodia into endothelial cells in caveolin- and F-actin-enriched areas, induced local translocation of ICAM-1 and caveolin-1 to the endothelial basal membrane and transmigrated through transcellular passages formed by a ring of F-actin and caveolae. Reduction of caveolin-1 levels using RNA interference (RNAi) specifically decreased lymphocyte transcellular transmigration. We propose that the translocation of ICAM-1 to caveola- and F-actin-rich domains links the sequential steps of lymphocyte adhesion and transendothelial migration and facilitates lymphocyte migration through endothelial cells from capillaries into surrounding tissue.


Blood | 2008

Basal secretion of von Willebrand factor from human endothelial cells

Jonathan P. Giblin; Lindsay Hewlett; Matthew J. Hannah

Endothelial cells store the adhesive glycoprotein von Willebrand factor (VWF) in Weibel-Palade bodies (WPBs), distinctively shaped regulated secretory organelles that undergo exocytosis in response to secretagogue. A significant proportion of newly synthesized VWF is also secreted spontaneously from nonstimulated cells, through what is thought to be the constitutive secretory pathway. To learn more about VWF trafficking, we performed kinetic analyses of the storage and nonstimulated secretion of VWF in cultured human endothelial cells. We found that most VWF was secreted through a route that was significantly delayed compared with constitutive secretion, although this pathway was responsible for secretion of a small amount of uncleaved VWF precursor. Disruption of pH-dependent sorting processes with ammonium chloride converted the secretion kinetics of mature VWF to that of its precursor. Conversely, preventing constitutive secretion of nascent protein with brefeldin A had only a modest effect on the spontaneous release of VWF, showing that most VWF secreted by nonstimulated cells was not constitutive secretion but basal release of a post-Golgi storage organelle, presumably the WPB. These data suggest that VWF is sorted to the regulated secretory pathway in endothelial cells much more efficiently than previously reported.


Journal of Cell Biology | 2005

An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells

Winnie W.Y. Lui-Roberts; Lucy M. Collinson; Lindsay Hewlett; Grégoire Michaux; Daniel F. Cutler

Clathrin provides an external scaffold to form small 50–100-nm transport vesicles. In contrast, formation of much larger dense-cored secretory granules is driven by selective aggregation of internal cargo at the trans-Golgi network; the only known role of clathrin in dense-cored secretory granules formation is to remove missorted proteins by small, coated vesicles during maturation of these spherical organelles. The formation of Weibel-Palade bodies (WPBs) is also cargo driven, but these are cigar-shaped organelles up to 5 μm long. We hypothesized that a cytoplasmic coat might be required to make these very different structures, and we found that new and forming WPBs are extensively, sometimes completely, coated. Overexpression of an AP-180 truncation mutant that prevents clathrin coat formation or reduced AP-1 expression by small interfering RNA both block WPB formation. We propose that, in contrast to other secretory granules, cargo aggregation alone is not sufficient to form immature WPBs and that an external scaffold that contains AP-1 and clathrin is essential.


Journal of Cell Science | 2003

Weibel-Palade bodies recruit Rab27 by a content- driven, maturation-dependent mechanism that is independent of cell type

Matthew J. Hannah; Alistair N. Hume; Monica Arribas; Ross Williams; Lindsay Hewlett; Miguel C. Seabra; Daniel F. Cutler

The identification of organelles is crucial for efficient cellular function, yet the basic underlying mechanisms by which this might occur have not been established. One group of proteins likely to be central to organelle identity is the Rab family of small GTPases. We have thus investigated Rab recruitment to membranes using endothelial cells as a model system. We report that Weibel-Palade bodies, the Von Willebrand Factor storage compartment of human umbilical vein endothelial cells, contain Rab27a. We have also found that Weibel-Palade body-like structures induced in HEK-293 cells by the expression of von Willebrand factor can recruit endogenous Rab27a. In the absence of von Willebrand Factor, Rab27a is not lysosome associated, indicating that it can distinguish between the Weibel-Palade-body-like organelle and a classical lysosome. Finally, a time course of Weibel-Palade-body formation was established using a green-fluorescent version of von Willebrand factor. Newly formed Weibel-Palade bodies lack Rab27a, which is acquired some hours after initial appearance of the cigar-shaped organelle. We conclude that a lumenal cargo protein drives the recruitment of Rab27a to the organelle membrane by a novel mechanism that is indirect, maturation-dependent and cell-type independent.


Seminars in Cell & Developmental Biology | 2002

Biogenesis of Weibel-Palade bodies

Matthew J. Hannah; Ross Williams; Jasber Kaur; Lindsay Hewlett; Daniel F. Cutler

Weibel-Palade bodies (WPBs) are the lysosome-related secretory organelles of endothelial cells. Their content protein von Willebrand factor, plays a key role in haemostasis, whilst P-selectin in the membranes is critical in the initiation of inflammation. Biogenesis of these rod-shaped structures is driven by von Willebrand factor, since its heterologous expression leads to formation of organelles morphologically indistinguishable from bona fide WPBs. The two main membrane proteins of WPBs, CD63 and P-selectin, have complex itineraries controlled largely by cytoplasmic targeting signals. We are only just beginning to understand the way in which these three proteins come together to form mature WPBs.


Traffic | 2006

P-selectin and CD63 use different mechanisms for delivery to Weibel-Palade bodies.

Kimberly J. Harrison-Lavoie; Grégoire Michaux; Lindsay Hewlett; Jasber Kaur; Matthew J. Hannah; Winnie W.Y. Lui-Roberts; Keith E. Norman; Daniel F. Cutler

The biogenesis of endothelial‐specific Weibel–Palade bodies (WPB) is poorly understood, despite their key role in both haemostasis and inflammation. Biogenesis of specialized organelles of haemopoietic cells is often adaptor protein complex 3‐dependent (AP‐3‐dependent), and AP‐3 has previously been shown to play a role in the trafficking of both WPB membrane proteins, P‐selectin and CD63. However, WPB are thought to form at the trans Golgi network (TGN), which is inconsistent with a role for AP‐3, which operates in post‐Golgi trafficking. We have therefore investigated in detail the mechanisms of delivery of these two membrane proteins to WPB. We find that P‐selectin is recruited to forming WPB in the trans‐Golgi by AP‐3‐independent mechanisms that use sorting information within both the cytoplasmic tail and the lumenal domain of the receptor. In contrast, CD63 is recruited to already‐budded WPB by an AP‐3‐dependent route. These different mechanisms of recruitment lead to the presence of distinct immature and mature populations of WPB in human umbilical vein endothelial cells (HUVEC).


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structural organization of Weibel-Palade bodies revealed by cryo-EM of vitrified endothelial cells

John Berriman; Sam Li; Lindsay Hewlett; Sebastian Wasilewski; Fedir N. Kiskin; Matthew J. Hannah; Peter B. Rosenthal

In endothelial cells, the multifunctional blood glycoprotein von Willebrand Factor (VWF) is stored for rapid exocytic release in specialized secretory granules called Weibel-Palade bodies (WPBs). Electron cryomicroscopy at the thin periphery of whole, vitrified human umbilical vein endothelial cells (HUVECs) is used to directly image WPBs and their interaction with a 3D network of closely apposed membranous organelles, membrane tubules, and filaments. Fourier analysis of images and tomographic reconstruction show that VWF is packaged as a helix in WPBs. The helical signature of VWF tubules is used to identify VWF-containing organelles and characterize their paracrystalline order in low dose images. We build a 3D model of a WPB in which individual VWF helices can bend, but in which the paracrystalline packing of VWF tubules, closely wrapped by the WPB membrane, is associated with the rod-like morphology of the granules.


Journal of Biological Chemistry | 2009

Differential Effect of Extracellular Acidosis on the Release and Dispersal of Soluble and Membrane Proteins Secreted from the Weibel-Palade Body

Victor Babich; Laura Knipe; Lindsay Hewlett; Athinoula Meli; John Dempster; Matthew J. Hannah

Proteins secreted from Weibel-Palade bodies (WPBs) play important roles in regulating inflammatory and hemostatic responses. Inflammation is associated with the extracellular acidification of tissues and blood, conditions that can alter the behavior of secreted proteins. The effect of extracellular pH (pHo) on the release of von Willebrand factor (VWF), the VWF-propolypeptide (Proregion), interleukin-8, eotaxin-3, P-selectin, and CD63 from WPBs was investigated using biochemical approaches and by direct optical analysis of individual WPB fusion events in human endothelial cells expressing green or red fluorescent fusions of these different cargo proteins. Between pHo 7.4 and 7.0, ionomycin-evoked WPB exocytosis was characterized by the adhesion of VWF to the cell surface and the formation of long filamentous strands. The rapid dispersal of Proregion, interleukin-8, and eotaxin-3 into solution, and of P-selectin and CD63 into the plasma membrane, was unaltered over this pHo range. At pHo 6.8 or lower, Proregion remained associated with VWF, in many cases WPB failed to collapse fully and VWF failed to form filamentous strands. At pHo 6.5 dispersal of interleukin-8, eotaxin-3, and the membrane protein CD63 remained unaltered compared with that at pHo 7.4; however, P-selectin dispersal into the plasma membrane was significantly slowed. Thus, extracellular acidification to levels of pHo 6.8 or lower significantly alters the behavior of secreted VWF, Proregion, and P-selectin while rapid release of the small pro-inflammatory mediators IL-8 and eotaxin-3 is essentially unaltered. Together, these data suggest that WPB exocytosis during extracellular acidosis may favor the control of inflammatory processes.


BMC Biochemistry | 2004

Lipid phosphate phosphatases dimerise, but this interaction is not required for in vivo activity

Camilla Burnett; Panagiota Makridou; Lindsay Hewlett; Ken Howard

BackgroundLipid phosphate phosphatases (LPPs) are integral membrane proteins believed to dephosphorylate bioactive lipid messengers, so modifying or attenuating their activities. Wunen, a Drosophila LPP homologue, has been shown to play a pivotal role in primordial germ cell (PGC) migration and survival during embryogenesis. It has been hypothesised that LPPs may form oligomeric complexes, and may even function as hexamers. We were interested in exploring this possibility, to confirm whether LPPs can oligomerise, and if they do, whether oligomerisation is required for either in vitro or in vivo activity.ResultsWe present evidence that Wunen dimerises, that these associations require the last thirty-five C-terminal amino-acids and depend upon the presence of an intact catalytic site. Expression of a truncated, monomeric form of Wunen in Drosophila embryos results in perturbation of germ cell migration and germ cell loss, as observed for full-length Wunen. We also observed that murine LPP-1 and human LPP-3 can also form associations, but do not form interactions with Wunen or each other. Furthermore, Wunen does not form dimers with its closely related counterpart Wunen-2. Finally we discovered that addition of a trimeric myc tag to the C-terminus of Wunen does not prevent dimerisation or in vitro activity, but does prevent activity in vivo.ConclusionLPPs do form complexes, but these do not seem to be specifically required for activity either in vitro or in vivo. Since neither dimerisation nor the C-terminus seem to be involved in substrate recognition, they may instead confer structural or functional stability through dimerisation. The results indicate that the associations we see are highly specific and occur only between monomers of the same protein.


Journal of Cell Science | 2010

Protein mobilities and P-selectin storage in Weibel–Palade bodies

Nikolai I. Kiskin; Nicola Hellen; Victor Babich; Lindsay Hewlett; Laura Knipe; Matthew J. Hannah

Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel–Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion–VWF paracrystalline core by prolonged incubation with NH4Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion–VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.

Collaboration


Dive into the Lindsay Hewlett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Babich

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Grégoire Michaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Camilla Burnett

University College London

View shared research outputs
Top Co-Authors

Avatar

Jasber Kaur

University College London

View shared research outputs
Top Co-Authors

Avatar

Ken Howard

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross Williams

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge