Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindsay J. Marshall is active.

Publication


Featured researches published by Lindsay J. Marshall.


Journal of Immunology | 2003

Plasminogen Activator Inhibitor-1 Supports IL-8-Mediated Neutrophil Transendothelial Migration by Inhibition of the Constitutive Shedding of Endothelial IL-8/Heparan Sulfate/Syndecan-1 Complexes

Lindsay J. Marshall; Lara S.P. Ramdin; Teresa Brooks; Peter Charlton; Janis K. Shute

The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.


Biochimica et Biophysica Acta | 2014

Human aquaporins: regulators of transcellular water flow

Rebecca E. Day; Philip Kitchen; David Owen; Charlotte E. Bland; Lindsay J. Marshall; Alex C. Conner; Roslyn M. Bill; Matthew T. Conner

BACKGROUND Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. SCOPE OF REVIEW AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. MAJOR CONCLUSIONS AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. GENERAL SIGNIFICANCE Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.


Journal of Leukocyte Biology | 2011

The innate immune system and the clearance of apoptotic cells

Andrew Devitt; Lindsay J. Marshall

Removal of unwanted, effete, or damaged cells through apoptosis, an active cell death culminating in phagocytic removal of cell corpses, is an important process throughout the immune system in development, control, and homeostasis. For example, neutrophil apoptosis is central to the resolution of acute inflammation, whereas autoreactive and virus‐infected cells are similarly deleted. The AC removal process functions not only to remove cell corpses but further, to control inappropriate immune responses so that ACs are removed in an anti‐inflammatory manner. Such ″silent″ clearance is mediated by the innate immune system via polarized monocyte/macrophage populations that use a range of PRRs and soluble molecules to promote binding and phagocytosis of ACs. Additionally, attractive signals are released from dying cells to recruit phagocytes to sites of death. Here, we review the molecular mechanisms associated with innate immune removal of and responses to ACs and outline how these may impact on tissue homeostasis and age‐associated pathology (e.g., cardiovascular disease). Furthermore, we discuss how an aging innate immune system may contribute to the inflammatory consequences of aging and why the study of an aging immune system may be a useful path to advance characterization of mechanisms mediating effective AC clearance.


Journal of Immunology | 2001

IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component

Lindsay J. Marshall; Beatrice Perks; Thomas W. Ferkol; Janis K. Shute

The bronchial epithelium is a source of both α and β chemokines and, uniquely, of secretory component (SC), the extracellular ligand-binding domain of the polymeric IgA receptor. Ig superfamily relatives of SC, such as IgG and α2-macroglobulin, bind IL-8. Therefore, we tested the hypothesis that SC binds IL-8, modifying its activity as a neutrophil chemoattractant. Primary bronchial epithelial cells were cultured under conditions to optimize SC synthesis. The chemokines IL-8, epithelial neutrophil-activating peptide-78, growth-related oncogene α, and RANTES were released constitutively by epithelial cells from both normal and asthmatic donors and detected in high m.w. complexes with SC. There were no qualitative differences in the production of SC-chemokine complexes by epithelial cells from normal or asthmatic donors, and in all cases this was the only form of chemokine detected. SC contains 15% N-linked carbohydrate, and complete deglycosylation with peptide N-glycosidase F abolished IL-8 binding. In micro-Boyden chamber assays, no IL-8-dependent neutrophil chemotactic responses to epithelial culture supernatants could be demonstrated. SC dose-dependently (IC50 ∼0.3 nM) inhibited the neutrophil chemotactic response to rIL-8 (10 nM) in micro-Boyden chamber assays and also inhibited IL-8-mediated neutrophil transendothelial migration. SC inhibited the binding of IL-8 to nonspecific binding sites on polycarbonate filters and endothelial cell monolayers, and therefore the formation of haptotactic gradients, without effects on IL-8 binding to specific receptors on neutrophils. The data indicate that in the airways IL-8 may be solubilized and inactivated by binding to SC.


Cell Death & Differentiation | 2012

Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells.

Elizabeth E. Torr; D.H. Gardner; Leanne Thomas; D.M. Goodall; Anne Bielemeier; Rachel S. Willetts; Helen R. Griffiths; Lindsay J. Marshall; Andrew Devitt

A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1–2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes.


Infection and Immunity | 2008

Gingipains from Porphyromonas gingivalis increase the chemotactic and respiratory burst-priming properties of the 77-amino-acid interleukin-8 variant

Irundika H.K. Dias; Lindsay J. Marshall; Peter A. Lambert; Iain L. C. Chapple; John B. Matthews; Helen R. Griffiths

ABSTRACT Porphyromonas gingivalis, a gram-negative anaerobe which is implicated in the etiology of active periodontitis, secretes degradative enzymes (gingipains) and sheds proinflammatory mediators (e.g., lipopolysaccharides [LPS]). LPS triggers the secretion of interleukin-8 (IL-8) from immune (72-amino-acid [aa] variant [IL-872aa]) and nonimmune (IL-877aa) cells. IL-877aa has low chemotactic and respiratory burst-inducing activity but is susceptible to cleavage by gingipains. This study shows that both R- and K-gingipain treatments of IL-877aa significantly enhance burst activation by fMLP and chemotactic activity (P < 0.05) but decrease burst activation and chemotactic activity of IL-872aa toward neutrophil-like HL60 cells and primary neutrophils (P < 0.05). Using tandem mass spectrometry, we have demonstrated that R-gingipain cleaves 5- and 11-aa peptides from the N-terminal portion of IL-877aa and the resultant peptides are biologically active, while K-gingipain removes an 8-aa N-terminal peptide yielding a 69-aa isoform of IL-8 that shows enhanced biological activity. During periodontitis, secreted gingipains may differentially affect neutrophil chemotaxis and activation in response to IL-8 according to the cellular source of the chemokine.


Paediatric Respiratory Reviews | 2003

Growth factors in cystic fibrosis - when more is not enough

Janis K. Shute; Lindsay J. Marshall; Kathleen Bodey; Andrew Bush

In the airways of patients with cystic fibrosis, repeated cycles of infection and inflammation are responsible for bronchial wall thickening, a major determinant of loss of FEV(1) and progressive damage to the small and large airways. Proteolytic degradation of elastin, collagen and fibronectin fibrils in the tissue matrix leads to the loss of normal tissue architecture and the development of bronchiectasis, the most commonly observed morphological change on high-resolution computed tomography examination. We have reviewed the evidence for increased expression of growth factors (TGF, HGF, FGF, EGF, VEGF) and activation of tissue repair processes in cystic fibrosis. Significantly higher concentrations of the growth factors compared with normal do not appear to prevent or reverse structural remodelling in the airways. The reasons why this process appears to be ineffective are discussed and we speculate on alternative strategies that might have a significant impact on the observed structural changes.


Drug Discovery Today | 2017

Towards a 21st-century roadmap for biomedical research and drug discovery: Consensus report and recommendations

Gillian R. Langley; Ian M. Adcock; François Busquet; Kevin M. Crofton; Elena Csernok; Christoph Giese; Tuula Heinonen; Kathrin Herrmann; Martin Hofmann-Apitius; Brigitte Landesmann; Lindsay J. Marshall; Emily McIvor; Alysson R. Muotri; Fozia Noor; Katrin Schutte; Troy Seidle; Anja van de Stolpe; Hilde Van Esch; Catherine Willett; Grzegorz Woszczek

Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and non-governmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this.


PLOS ONE | 2013

The N-Terminus of CD14 Acts to Bind Apoptotic Cells and Confers Rapid-Tethering Capabilities on Non-Myeloid Cells

Leanne Thomas; Anne Bielemeier; Peter A. Lambert; Richard P. Darveau; Lindsay J. Marshall; Andrew Devitt

Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called ‘non-professional’ phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material.


Inhalation Toxicology | 2017

A comparative study of electronic cigarette vapor extracts on airway-related cell lines in vitro

Laura J. Leslie; Pranav Vasanthi Bathrinarayanan; Pamela Jackson; Justin A. Mabiala Ma Muanda; Ross Pallett; Christopher J. P. Stillman; Lindsay J. Marshall

Abstract The use of electronic cigarettes (ECs) is rapidly increasing worldwide; however, scientific evidence regarding EC cytotoxicity is limited. The aim of this study was to evaluate the acute cytotoxicity of EC vapor extract (ECE) on airway-related cells in vitro. Cigarette smoke extract (CSE), vapor extract of fifteen brands/flavors of ECs and the extract from the E-vehicle (propylene glycol and glycerin) was collected. Extracts, in concentrations of 100–12.5%, were added to human bronchial epithelial (BEAS-2B, IB3-1 and C38), fibroblast (Wi-38) and macrophage (J774 and THP-1) cell lines. Viability was assessed after 24 h using a standard XTT assay. Viability of <70% of control (no extract) was considered cytotoxic according to UNI EN ISO 10993-5 standards. CSE displayed a concentration-dependent influence on cell viability across all four cell lines with 100% producing the most toxic effect, therefore validating the model and indicating higher cytotoxicity than in ECEs. ECEs did reduce viability although this was not correlated with nicotine content or the E-vehicle. However, several flavors proved cytotoxic, with variation between different brands and cell lines. These data indicate that not all ECs are the same and that use of a particular flavor or brand may have differing effects. The cell line used is also an important factor. More research is crucial to ascertain the health effects of different ECs before they can be accepted as a safe alternative to tobacco cigarettes.

Collaboration


Dive into the Lindsay J. Marshall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janis K. Shute

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Andrew Bush

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranjan Suri

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice Perks

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge