Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindsay S. Cahill is active.

Publication


Featured researches published by Lindsay S. Cahill.


NeuroImage | 2012

Preparation of fixed mouse brains for MRI

Lindsay S. Cahill; Christine Laliberté; Jacob Ellegood; Shoshana Spring; Jacqueline A. Gleave; Matthijs van Eede; Jason P. Lerch; R. Mark Henkelman

In fixed mouse brain magnetic resonance images, a high prevalence of fixation artifacts have been observed. Of more than 1700 images of fixed brains acquired at our laboratory, fixation artifacts were present in approximately 30%. In this study, two of these artifacts are described and their causes are identified. A hyperintense rim around the brain is observed when using perfusates reconstituted from powder and delivered at a high flow rate. It is proposed that these perfusion conditions cause blockage of the capillary beds and an increase in pressure that ruptures the vessels, resulting in a blister of liquid below the dura mater. Secondly, gray-white matter contrast inversion is observed when too short a fixation time or too low a concentration of fixative is used, resulting in inadequate fixation. The deleterious consequences of these artifacts for quantitative data analysis are discussed, and precautions for their prevention are provided.


Journal of Visualized Experiments | 2011

Multiple-mouse Neuroanatomical Magnetic Resonance Imaging

Jun Dazai; Shoshana Spring; Lindsay S. Cahill; R. Mark Henkelman

The field of mouse phenotyping with magnetic resonance imaging (MRI) is rapidly growing, motivated by the need for improved tools for characterizing and evaluating mouse models of human disease. MRI is an excellent modality for investigating genetically altered animals. It is capable of whole brain coverage, can be used in vivo, and provides multiple contrast mechanisms for investigating different aspects of neuranatomy and physiology. The advent of high-field scanners along with the ability to scan multiple mice simultaneously allows for rapid phenotyping of novel mutations. Effective mouse MRI studies require attention to many aspects of experiment design. In this article, we will describe general methods to acquire quality images for mouse phenotyping using a system that images mice concurrently in shielded transmit/receive radio frequency (RF) coils in a common magnet (Bock et al., 2003). We focus particularly on anatomical phenotyping, an important and accessible application that has shown a high potential for impact in many mouse models at our imaging centre. Before we can provide the detailed steps to acquire such images, there are important practical considerations for both in vivo brain imaging (Dazai et al., 2004) and ex vivo brain imaging (Spring et al., 2007) that should be noted. These are discussed below.


Journal of Cerebral Blood Flow and Metabolism | 2014

Brain Sparing in Fetal Mice: BOLD MRI and Doppler Ultrasound Show Blood Redistribution During Hypoxia

Lindsay S. Cahill; Yu-Qing Zhou; Mike Seed; Christopher K. Macgowan; John G. Sled

Mice reproduce many features of human pregnancy and have been widely used to model disorders of pregnancy. However, it has not been known whether fetal mice reproduce the physiologic response to hypoxia known as brain sparing, where blood flow is redistributed to preserve oxygenation of the brain at the expense of other fetal organs. In the present study, blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and Doppler ultrasound were used to determine the effect of acute hypoxia on the fetal blood flow in healthy, pregnant mice. As the maternal inspired gas mixture was varied between 100% and 8% oxygen on the timescale of minutes, the BOLD signal intensity decreased by 44 ± 18% in the fetal liver and by 12 ± 7% in the fetal brain. Using Doppler ultrasound measurements, mean cerebral blood velocity was observed to rise by 15 ± 8% under hypoxic conditions relative to hyperoxia. These findings are consistent with active regulation of cerebral oxygenation and clearly show brain sparing in fetal mice.


NeuroImage | 2015

MRI-detectable changes in mouse brain structure induced by voluntary exercise.

Lindsay S. Cahill; Patrick E. Steadman; Carly E. Jones; Christine Laliberté; Jun Dazai; Jason P. Lerch; Bojana Stefanovic; John G. Sled

Physical exercise, besides improving cognitive and mental health, is known to cause structural changes in the brain. Understanding the structural changes that occur with exercise as well as the neuroanatomical correlates of a predisposition for exercise is important for understanding human health. This study used high-resolution 3D MR imaging, in combination with deformation-based morphometry, to investigate the macroscopic changes in brain structure that occur in healthy adult mice following four weeks of voluntary exercise. We found that exercise induced changes in multiple brain structures that are involved in motor function and learning and memory including the hippocampus, dentate gyrus, stratum granulosum of the dentate gyrus, cingulate cortex, olivary complex, inferior cerebellar peduncle and regions of the cerebellum. In addition, a number of brain structures, including the hippocampus, striatum and pons, when measured on MRI prior to the start of exercise were highly predictive of subsequent exercise activity. Exercise tended to normalize these pre-existing differences between mice.


Physiological Genomics | 2014

Assessment of flow distribution in the mouse fetal circulation at late gestation by high-frequency Doppler ultrasound

Yu-Qing Zhou; Lindsay S. Cahill; Michael D. Wong; Mike Seed; Christopher K. Macgowan; John G. Sled

This study used high-frequency ultrasound to evaluate the flow distribution in the mouse fetal circulation at late gestation. We studied 12 fetuses (embryonic day 17.5) from 12 pregnant CD1 mice with 40 MHz ultrasound to assess the flow in 11 vessels based on Doppler measurements of blood velocity and M-mode measurements of diameter. Specifically, the intrahepatic umbilical vein (UVIH), ductus venosus (DV), foramen ovale (FO), ascending aorta (AA), main pulmonary artery (MPA), ductus arteriosus (DA), descending thoracic aorta (DTA), common carotid artery (CCA), inferior vena cava (IVC), and right and left superior vena cavae (RSVC, LSVC) were examined, and anatomically confirmed by micro-CT. The mouse fetal circulatory system was found to be similar to that of the humans in terms of the major circuit and three shunts, but characterized by bilateral superior vena cavae and a single umbilical artery. The combined cardiac output (CCO) was 1.22 ± 0.05 ml/min, with the left ventricle (flow in AA) contributing 47.8 ± 2.3% and the right ventricle (flow in MPA) 52.2 ± 2.3%. Relative to the CCO, the flow percentages were 13.6 ± 1.0% for the UVIH, 10.4 ± 1.1% for the DV, 35.6 ± 2.4% for the DA, 41.9 ± 2.6% for the DTA, 3.8 ± 0.3% for the CCA, 29.5 ± 2.2% for the IVC, 12.7 ± 1.0% for the RSVC, and 9.9 ± 0.9% for the LSVC. The calculated flow percentage was 16.6 ± 3.4% for the pulmonary circulation and 31.2 ± 5.3% for the FO. In conclusion, the flow in mouse fetal circulation can be comprehensively evaluated with ultrasound. The baseline data of the flow distribution in normal mouse fetus serve as the reference range for future studies.


Journal of Cerebral Blood Flow and Metabolism | 2017

Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice

Lindsay S. Cahill; Lisa M. Gazdzinski; Albert K. Y. Tsui; Yu-Qing Zhou; Sharon Portnoy; Elaine Liu; C. David Mazer; Gregory M. T. Hare; Andrea Kassner; John G. Sled

Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.


Journal of Cerebral Blood Flow and Metabolism | 2015

Evaluation of cerebrovascular impedance and wave reflection in mouse by ultrasound

Christopher K. Macgowan; Sarah Joy Stoops; Yu-Qing Zhou; Lindsay S. Cahill; John G. Sled

Genetic and surgical mouse models are commonly used to study cerebrovascular disease, but their size makes invasive hemodynamic testing technically challenging. The purpose of this study was to demonstrate a noninvasive measurement of cerebrovascular impedance and wave reflection in mice using high-frequency ultrasound in the left common carotid artery (LCCA), and to examine whether microvascular changes associated with hypercapnia could be detected with such an approach. Ten mice (C57BL/6J) were studied using a high-frequency ultrasound system (40 MHz). Lumen area and blood flow waveforms were obtained from the LCCA and used to calculate pulse-wave velocity, input impedance, and reflection amplitude and transit time under both normocapnic and hypercapnic (5% CO2) ventilation. With hypercapnia, vascular resistance was observed to decrease by 87%±12%. Although the modulus of input impedance was unchanged with hypercapnia, a phase decrease indicative of increased total arterial compliance was observed at low harmonics together with an increased reflection coefficient in both the time (0.57±0.08 versus 0.68±0.08, P=0.04) and frequency domains (0.62±0.08 versus 0.73±0.06, P=0.02). Interestingly, the majority of LCCA blood flow was found to pass into the internal carotid artery (range=76% to 90%, N=3), suggesting that hemodynamic measurements in this vessel are a good metric for intracerebral reactivity in mouse.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Red Blood Cell Antibody Induced Anemia Causes Differential Degrees of Tissue Hypoxia in Kidney and Brain

Nikhil Mistry; C. David Mazer; John G. Sled; Alan H. Lazarus; Lindsay S. Cahill; Max Solish; Yu-Qing Zhou; Nadya Romanova; Alexander G. M. Hare; Allan Doctor; Joseph A. Fisher; Keith R. Brunt; Jeremy A. Simpson; Gregory M. T. Hare

Moderate anemia is associated with increased mortality and morbidity, including acute kidney injury (AKI), in surgical patients. A red blood cell (RBC)-specific antibody model was utilized to determine whether moderate subacute anemia could result in tissue hypoxia as a potential mechanism of injury. Cardiovascular and hypoxic cellular responses were measured in transgenic mice capable of expressing hypoxia-inducible factor-1α (HIF-1α)/luciferase activity in vivo. Antibody-mediated anemia was associated with mild intravascular hemolysis (6 h) and splenic RBC sequestration ( day 4), resulting in a nadir hemoglobin concentration of 89 ± 13 g/l on day 4. At this time point, renal tissue oxygen tension (PtO2) was decreased in anemic mice relative to controls (13.1 ± 4.3 vs. 20.8 ± 3.7 mmHg, P < 0.001). Renal tissue hypoxia was associated with an increase in HIF/luciferase expression in vivo ( P = 0.04) and a 20-fold relative increase in renal erythropoietin mRNA transcription ( P < 0.001) but no increase in renal blood flow ( P = 0.67). By contrast, brain PtO2 was maintained in anemic mice relative to controls (22.7 ± 5.2 vs. 23.4 ± 9.8 mmHg, P = 0.59) in part because of an increase in internal carotid artery blood flow (80%, P < 0.001) and preserved cerebrovascular reactivity. Despite these adaptive changes, an increase in brain HIF-dependent mRNA levels was observed (erythropoietin: P < 0.001; heme oxygenase-1: P = 0.01), providing evidence for subtle cerebral tissue hypoxia in anemic mice. These data demonstrate that moderate subacute anemia causes significant renal tissue hypoxia, whereas adaptive cerebrovascular responses limit the degree of cerebral tissue hypoxia. Further studies are required to assess whether hypoxia is a mechanism for acute kidney injury associated with anemia.


Journal of Cerebral Blood Flow and Metabolism | 2017

Effects of voluntary exercise on structure and function of cortical microvasculature.

Adrienne Dorr; Lynsie A.M. Thomason; Margaret M. Koletar; Illsung L Joo; Joe Steinman; Lindsay S. Cahill; John G. Sled; Bojana Stefanovic

Aerobic activity has been shown highly beneficial to brain health, yet much uncertainty still surrounds the effects of exercise on the functioning of cerebral microvasculature. This study used two-photon fluorescence microscopy to examine cerebral hemodynamic alterations as well as accompanying geometric changes in the cortical microvascular network following five weeks of voluntary exercise in transgenic mice endogenously expressing tdTomato in vascular endothelial cells to allow visualization of microvessels irrespective of their perfusion levels. We found a diminished microvascular response to a hypercapnic challenge (10% FiCO2) in running mice when compared to that in nonrunning controls despite commensurate increases in transcutaneous CO2 tension. The flow increase to hypercapnia in runners was 70% lower than that in nonrunners (p = 0.0070) and the runners’ arteriolar red blood cell speed changed by only half the amount seen in nonrunners (p = 0.0085). No changes were seen in resting hemodynamics or in the systemic physiological parameters measured. Although a few unperfused new vessels were observed on visual inspection, running did not produce significant morphological differences in the microvascular morphometric parameters, quantified following semiautomated tracking of the microvascular networks. We propose that voluntary running led to increased cortical microvascular efficiency and desensitization to CO2 elevation.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Ultrasound detection of altered placental vascular morphology based on hemodynamic pulse wave reflection

Anum Rahman; Yu-Qing Zhou; Yohan Yee; Jun Dazai; Lindsay S. Cahill; John Kingdom; Christopher K. Macgowan; John G. Sled

Abnormally pulsatile umbilical artery (UA) Doppler ultrasound velocity waveforms are a hallmark of severe or early onset placental-mediated intrauterine growth restriction (IUGR), whereas milder late onset IUGR pregnancies typically have normal UA pulsatility. The diagnostic utility of these waveforms to detect placental pathology is thus limited and hampered by factors outside of the placental circulation, including fetal cardiac output. In view of these limitations, we hypothesized that these Doppler waveforms could be more clearly understood as a reflection phenomenon and that a reflected pulse pressure wave is present in the UA that originates from the placenta and propagates backward along the UA. To investigate this, we developed a new ultrasound approach to isolate that portion of the UA Doppler waveform that arises from a pulse pressure wave propagating backward along the UA. Ultrasound measurements of UA lumen diameter and flow waveforms were used to decompose the observed flow waveform into its forward and reflected components. Evaluation of CD1 and C57BL/6 mice at embryonic day (E)15.5 and E17.5 demonstrated that the reflected waveforms diverged between the strains at E17.5, mirroring known changes in the fractal geometry of fetoplacental arteries at these ages. These experiments demonstrate the feasibility of noninvasively measuring wave reflections that originate from the fetoplacental circulation. The observed reflections were consistent with theoretical predictions based on the area ratio of parent to daughters at bifurcations in fetoplacental arteries suggesting that this approach could be used in the diagnosis of fetoplacental vascular pathology that is prevalent in human IUGR. Given that the proposed measurements represent a subset of those currently used in human fetal surveillance, the adaptation of this technology could extend the diagnostic utility of Doppler ultrasound in the detection of placental vascular pathologies that cause IUGR.NEW & NOTEWORTHY Here, we describe a novel approach to noninvasively detect microvascular changes in the fetoplacental circulation using ultrasound. The technique is based on detecting reflection pulse pressure waves that travel along the umbilical artery. Using a proof-of-principle study, we demonstrate the feasibility of the technique in two strains of experimental mice.

Collaboration


Dive into the Lindsay S. Cahill's collaboration.

Top Co-Authors

Avatar

John G. Sled

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Seed

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason P. Lerch

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bojana Stefanovic

Sunnybrook Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christine Laliberté

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge