Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindsey A. Criswell is active.

Publication


Featured researches published by Lindsey A. Criswell.


Nature Genetics | 2008

Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM , PXK , KIAA1542 and other loci

John B. Harley; Marta E. Alarcón-Riquelme; Lindsey A. Criswell; Chaim O. Jacob; Robert P. Kimberly; Kathy L. Moser; Betty P. Tsao; Timothy J. Vyse; Carl D. Langefeld; Swapan K. Nath; Joel M. Guthridge; Beth L. Cobb; Daniel B. Mirel; Miranda C. Marion; Adrienne H. Williams; Jasmin Divers; Wei Wang; Summer G Frank; Bahram Namjou; Stacey Gabriel; Annette Lee; Peter K. Gregersen; Timothy W. Behrens; Kimberly E. Taylor; Michelle M. A. Fernando; Raphael Zidovetzki; Patrick M. Gaffney; Jeffrey C. Edberg; John D. Rioux; Joshua O. Ojwang

Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ∼30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio = 0.82–1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ⩾9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.


Nature Genetics | 2010

Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

Eli A. Stahl; Soumya Raychaudhuri; Elaine F. Remmers; Gang Xie; Stephen Eyre; Brian Thomson; Yonghong Li; Fina Kurreeman; Alexandra Zhernakova; Anne Hinks; Candace Guiducci; Robert Chen; Lars Alfredsson; Christopher I. Amos; Kristin Ardlie; Anne Barton; John Bowes; Elisabeth Brouwer; Noël P. Burtt; Joseph J. Catanese; Jonathan S. Coblyn; Marieke J. H. Coenen; Karen H. Costenbader; Lindsey A. Criswell; J. Bart A. Crusius; Jing Cui; Paul I. W. de Bakker; Philip L. De Jager; Bo Ding; Paul Emery

To identify new genetic risk factors for rheumatoid arthritis, we conducted a genome-wide association study meta-analysis of 5,539 autoantibody-positive individuals with rheumatoid arthritis (cases) and 20,169 controls of European descent, followed by replication in an independent set of 6,768 rheumatoid arthritis cases and 8,806 controls. Of 34 SNPs selected for replication, 7 new rheumatoid arthritis risk alleles were identified at genome-wide significance (P < 5 × 10−8) in an analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5 and PXK. We also refined associations at two established rheumatoid arthritis risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed rheumatoid arthritis risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P < 0.05, many of which are validated autoimmune risk alleles, suggesting that most represent genuine rheumatoid arthritis risk alleles.


Nature | 2014

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Yukinori Okada; Di Wu; Gosia Trynka; Towfique Raj; Chikashi Terao; Katsunori Ikari; Yuta Kochi; Koichiro Ohmura; Akari Suzuki; Shinji Yoshida; Robert R. Graham; Arun Manoharan; Ward Ortmann; Tushar Bhangale; Joshua C. Denny; Robert J. Carroll; Anne E. Eyler; Jeffrey D. Greenberg; Joel M. Kremer; Dimitrios A. Pappas; Lei Jiang; Jian Yin; Lingying Ye; Ding Feng Su; Jian Yang; Gang Xie; E. Keystone; Harm-Jan Westra; Tonu Esko; Andres Metspalu

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


The New England Journal of Medicine | 2008

Association of Systemic Lupus Erythematosus with C8orf13–BLK and ITGAM–ITGAX

Geoffrey Hom; Robert R. Graham; Barmak Modrek; Kimberly E. Taylor; Ward Ortmann; Sophie Garnier; Annette Lee; Sharon A. Chung; Ricardo C. Ferreira; P.V. Krishna Pant; Dennis G. Ballinger; Roman Kosoy; F. Yesim Demirci; M. Ilyas Kamboh; Amy H. Kao; Chao Tian; Iva Gunnarsson; Anders Bengtsson; Solbritt Rantapää-Dahlqvist; Michelle Petri; Susan Manzi; Michael F. Seldin; Lars Rönnblom; Ann-Christine Syvänen; Lindsey A. Criswell; Peter K. Gregersen; Timothy W. Behrens

BACKGROUND Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease in which the risk of disease is influenced by complex genetic and environmental contributions. Alleles of HLA-DRB1, IRF5, and STAT4 are established susceptibility genes; there is strong evidence for the existence of additional risk loci. METHODS We genotyped more than 500,000 single-nucleotide polymorphisms (SNPs) in DNA samples from 1311 case subjects with SLE and 1783 control subjects; all subjects were North Americans of European descent. Genotypes from 1557 additional control subjects were obtained from public data repositories. We measured the association between the SNPs and SLE after applying strict quality-control filters to reduce technical artifacts and to correct for the presence of population stratification. Replication of the top loci was performed in 793 case subjects and 857 control subjects from Sweden. RESULTS Genetic variation in the region upstream from the transcription initiation site of the gene encoding B lymphoid tyrosine kinase (BLK) and C8orf13 (chromosome 8p23.1) was associated with disease risk in both the U.S. and Swedish case-control series (rs13277113; odds ratio, 1.39; P=1x10(-10)) and also with altered levels of messenger RNA in B-cell lines. In addition, variants on chromosome 16p11.22, near the genes encoding integrin alpha M (ITGAM, or CD11b) and integrin alpha X (ITGAX), were associated with SLE in the combined sample (rs11574637; odds ratio, 1.33; P=3x10(-11)). CONCLUSIONS We identified and then confirmed through replication two new genetic loci for SLE: a promoter-region allele associated with reduced expression of BLK and increased expression of C8orf13 and variants in the ITGAM-ITGAX region.


Arthritis Care and Research | 2012

American College of Rheumatology classification criteria for Sjögren's syndrome: a data-driven, expert consensus approach in the Sjögren's International Collaborative Clinical Alliance cohort.

Stephen Shiboski; Caroline H. Shiboski; Lindsey A. Criswell; Alan N. Baer; Stephen Challacombe; Hector Lanfranchi; Morten Schiødt; Hisanori Umehara; Frederick B. Vivino; Yan Zhao; Yi Dong; Deborah Greenspan; Ana Maria Heidenreich; P. Helin; Bruce Kirkham; Kazuko Kitagawa; Genevieve Larkin; M. Li; Thomas M. Lietman; J. Lindegaard; Nancy A. McNamara; Kenneth E. Sack; Penelope Shirlaw; Susumu Sugai; Cristina F. Vollenweider; John P. Whitcher; Ava J. Wu; S. Zhang; Wen Zhang; John S. Greenspan

We propose new classification criteria for Sjögrens syndrome (SS), which are needed considering the emergence of biologic agents as potential treatments and their associated comorbidity. These criteria target individuals with signs/symptoms suggestive of SS.


Nature Genetics | 2009

A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus

Vesela Gateva; Johanna K. Sandling; Geoff Hom; Kimberly E. Taylor; Sharon A. Chung; Xin Sun; Ward Ortmann; Roman Kosoy; Ricardo C. Ferreira; Gunnel Nordmark; Iva Gunnarsson; Elisabet Svenungsson; Leonid Padyukov; Gunnar Sturfelt; Andreas Jönsen; Anders Bengtsson; Solbritt Rantapää-Dahlqvist; Emily C. Baechler; Elizabeth E. Brown; Graciela S. Alarcón; Jeffrey C. Edberg; Rosalind Ramsey-Goldman; Gerald McGwin; John D. Reveille; Luis M. Vilá; Robert P. Kimberly; Susan Manzi; Michelle Petri; Annette Lee; Peter K. Gregersen

Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 × 10−8): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P≤ 1 × 10−5. A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 × 10−3) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.


Nature Genetics | 2008

Common variants at CD40 and other loci confer risk of rheumatoid arthritis

Soumya Raychaudhuri; Elaine F. Remmers; Annette Lee; Rachel Hackett; Candace Guiducci; Noël P. Burtt; Lauren Gianniny; Benjamin D. Korman; Leonid Padyukov; Fina Kurreeman; Monica Chang; Joseph J. Catanese; Bo Ding; Sandra Wong; Annette H. M. van der Helm-van Mil; Benjamin M. Neale; Jonathan S. Coblyn; Jing Cui; Paul P. Tak; Gert Jan Wolbink; J. Bart A. Crusius; Irene E. van der Horst-Bruinsma; Lindsey A. Criswell; Christopher I. Amos; Michael F. Seldin; Daniel L. Kastner; Kristin Ardlie; Lars Alfredsson; Karen H. Costenbader; David Altshuler

To identify rheumatoid arthritis risk loci in European populations, we conducted a meta-analysis of two published genome-wide association (GWA) studies totaling 3,393 cases and 12,462 controls. We genotyped 31 top-ranked SNPs not previously associated with rheumatoid arthritis in an independent replication of 3,929 autoantibody-positive rheumatoid arthritis cases and 5,807 matched controls from eight separate collections. We identified a common variant at the CD40 gene locus (rs4810485, P = 0.0032 replication, P = 8.2 × 10−9 overall, OR = 0.87). Along with other associations near TRAF1 (refs. 2,3) and TNFAIP3 (refs. 4,5), this implies a central role for the CD40 signaling pathway in rheumatoid arthritis pathogenesis. We also identified association at the CCL21 gene locus (rs2812378, P = 0.00097 replication, P = 2.8 × 10−7 overall), a gene involved in lymphocyte trafficking. Finally, we identified evidence of association at four additional gene loci: MMEL1-TNFRSF14 (rs3890745, P = 0.0035 replication, P = 1.1 × 10−7 overall), CDK6 (rs42041, P = 0.010 replication, P = 4.0 × 10−6 overall), PRKCQ (rs4750316, P = 0.0078 replication, P = 4.4 × 10−6 overall), and KIF5A-PIP4K2C (rs1678542, P = 0.0026 replication, P = 8.8 × 10−8 overall).


American Journal of Human Genetics | 2001

A Genomewide Screen in Multiplex Rheumatoid Arthritis Families Suggests Genetic Overlap with Other Autoimmune Diseases

Damini Jawaheer; Michael F. Seldin; Christopher I. Amos; Wei Chen; Russell Shigeta; Joanita Monteiro; Marlene Kern; Lindsey A. Criswell; Salvatore Albani; J. Lee Nelson; Daniel O. Clegg; Richard M. Pope; Harry W. Schroeder; S. Louis Bridges; David S. Pisetsky; Ryk Ward; Daniel L. Kastner; Ronald L. Wilder; Theodore Pincus; Leigh F. Callahan; Donald Flemming; Mark H. Wener; Peter K. Gregersen

Rheumatoid arthritis (RA) is an autoimmune/inflammatory disorder with a complex genetic component. We report the first major genomewide screen of multiplex families with RA gathered in the United States. The North American Rheumatoid Arthritis Consortium, using well-defined clinical criteria, has collected 257 families containing 301 affected sibling pairs with RA. A genome screen for allele sharing was performed, using 379 microsatellite markers. A nonparametric analysis using SIBPAL confirmed linkage of the HLA locus to RA (P < .00005), with lambdaHLA = 1.79. However, the analysis also revealed a number of non-HLA loci on chromosomes 1 (D1S235), 4 (D4S1647), 12 (D12S373), 16 (D16S403), and 17 (D17S1301), with evidence for linkage at a significance level of P<.005. Analysis of X-linked markers using the MLOD method from ASPEX also suggests linkage to the telomeric marker DXS6807. Stratifying the families into white or seropositive subgroups revealed some additional markers that showed improvement in significance over the full data set. Several of the regions that showed evidence for nominal significance (P < .05) in our data set had previously been implicated in RA (D16S516 and D17S1301) or in other diseases of an autoimmune nature, including systemic lupus erythematosus (D1S235), inflammatory bowel disease (D4S1647, D5S1462, and D16S516), multiple sclerosis (D12S1052), and ankylosing spondylitis (D16S516). Therefore, genes in the HLA complex play a major role in RA susceptibility, but several other regions also contribute significantly to overall genetic risk.


Nature Genetics | 2008

Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus

Stacy L. Musone; Kimberly E. Taylor; Timothy T. Lu; Joanne Nititham; Ricardo C. Ferreira; Ward Ortmann; Nataliya Shifrin; Michelle Petri; M. Ilyas Kamboh; Susan Manzi; Michael F. Seldin; Peter K. Gregersen; Timothy W. Behrens; Averil Ma; Pui-Yan Kwok; Lindsey A. Criswell

The TNFAIP3 (tumor necrosis factor alpha–induced protein 3) gene encodes a ubiquitin editing enzyme, A20, that restricts NF-κB–dependent signaling and prevents inflammation. We show that three independent SNPs in the TNFAIP3 region (rs13192841, rs2230926 and rs6922466) are associated with systemic lupus erythematosus (SLE) among individuals of European ancestry. These findings provide critical links between A20 and the etiology of SLE.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus

Robert R. Graham; Chieko Kyogoku; Snaevar Sigurdsson; Irina A. Vlasova; Leela Davies; Emily C. Baechler; Robert M. Plenge; Thearith Koeuth; Ward Ortmann; Geoffrey Hom; Jason W. Bauer; Clarence Gillett; Noël P. Burtt; Deborah S. Cunninghame Graham; Robert C. Onofrio; Michelle Petri; Iva Gunnarsson; Elisabet Svenungsson; Lars Rönnblom; Gunnel Nordmark; Peter K. Gregersen; Kathy L. Moser; Patrick M. Gaffney; Lindsey A. Criswell; Timothy J. Vyse; Ann-Christine Syvänen; Paul R. Bohjanen; Mark J. Daly; Timothy W. Behrens; David Altshuler

Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3′ UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.

Collaboration


Dive into the Lindsey A. Criswell's collaboration.

Top Co-Authors

Avatar

Peter K. Gregersen

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Petri

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Kelly

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Robert P. Kimberly

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graciela S. Alarcón

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Chaim O. Jacob

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge