Lindsey Leach
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lindsey Leach.
Genetics | 2006
Xiaohua Hu; Minghui Wang; Tao Tan; Jiarui Li; Hao Yang; Lindsey Leach; Rongmei Zhang; Zewei Luo
Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained ∼50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.
Theoretical and Applied Genetics | 2012
Minghui Wang; Ning Jiang; Tianye Jia; Lindsey Leach; James Cockram; Jordi Comadran; Paul D. Shaw; Robbie Waugh; Zewei Luo
Genome-wide association study (GWAS) has become an obvious general approach for studying traits of agricultural importance in higher plants, especially crops. Here, we present a GWAS of 32 morphologic and 10 agronomic traits in a collection of 615 barley cultivars genotyped by genome-wide polymorphisms from a recently developed barley oligonucleotide pool assay. Strong population structure effect related to mixed sampling based on seasonal growth habit and ear row number is present in this barley collection. Comparison of seven statistical approaches in a genome-wide scan for significant associations with or without correction for confounding by population structure, revealed that in reducing false positive rates while maintaining statistical power, a mixed linear model solution outperforms genomic control, structured association, stepwise regression control and principal components adjustment. The present study reports significant associations for sixteen morphologic and nine agronomic traits and demonstrates the power and feasibility of applying GWAS to explore complex traits in highly structured plant samples.
Genetics | 2005
Zewei Luo; Ze Zhang; Lindsey Leach; Rongmei Zhang; J. E. Bradshaw; Michael J. Kearsey
An international consortium has launched the whole-genome sequencing of potato, the fourth most important food crop in the world. Construction of genetic linkage maps is an inevitable step for taking advantage of the genome projects for the development of novel cultivars in the autotetraploid crop species. However, linkage analysis in autopolyploids, the kernel of linkage map construction, is theoretically challenging and methodologically unavailable in the current literature. We present here a theoretical analysis and a statistical method for tetrasomic linkage analysis with dominant and/or codominant molecular markers. The analysis reveals some essential properties of the tetrasomic model. The method accounts properly for double reduction and incomplete information of marker phenotype in regard to the corresponding phenotype in estimating the coefficients of double reduction and recombination frequency and in testing their significance by using the marker phenotype data. Computer simulation was developed to validate the analysis and the method and a case study with 201 AFLP and SSR markers scored on 228 full-sib individuals of autotetraploid potato is used to illustrate the utility of the method in map construction in autotetraploid species.
Oncogene | 2014
X Wu; T Liu; Ou Fang; Lindsey Leach; Xiaohua Hu; Zewei Luo
MicroRNAs (miRNAs) are increasingly implicated in regulating tumor malignance through their capacity to coordinately repress expression of tumor-related genes. Here, we show that overexpression of miR-194 in lung cancer cell lines, results in suppressing metastasis of lung cancer cells, while inhibiting its expression through ‘miRNA sponge’ promotes the cancer cells to metastasize. miR-194 expression is also found to be in strongly negative association with metastasis in clinical specimens of non-small cell lung cancer. We demonstrate that miR-194 directly targets both BMP1 and p27kip1. The resulting downregulation of BMP1 leads to suppression of TGFβ activity and, thus, to downregulation of the expression of key oncogenic genes (matrix metalloproteinases MMP2 and MMP9). This leads, in turn, to decreased tumor invasion. In addition, the miRNA-194-induced suppression of p27kip1 activates the RhoA pathway, producing enhanced development of actin stress fibers and impaired migration of cancer cells. These findings reveal two structurally independent but functionally linked branches of the regulatory and signaling pathway that together provide a bridge between the metastasis-depressing miRNA and the key genes that govern the malignancy of lung cancers.
BMC Genomics | 2014
Lindsey Leach; Eric J. Belfield; Caifu Jiang; Carly Brown; Aziz Mithani; Nicholas P. Harberd
BackgroundBread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression.ResultsWe discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss.ConclusionsWe conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.
BMC Bioinformatics | 2008
Ning Jiang; Lindsey Leach; Xiaohua Hu; Elena Potokina; Tianye Jia; Arnis Druka; Robbie Waugh; Michael J. Kearsey; Zewei Luo
BackgroundAffymetrix high density oligonucleotide expression arrays are widely used across all fields of biological research for measuring genome-wide gene expression. An important step in processing oligonucleotide microarray data is to produce a single value for the gene expression level of an RNA transcript using one of a growing number of statistical methods. The challenge for the researcher is to decide on the most appropriate method to use to address a specific biological question with a given dataset. Although several research efforts have focused on assessing performance of a few methods in evaluating gene expression from RNA hybridization experiments with different datasets, the relative merits of the methods currently available in the literature for evaluating genome-wide gene expression from Affymetrix microarray data collected from real biological experiments remain actively debated.ResultsThe present study reports a comprehensive survey of the performance of all seven commonly used methods in evaluating genome-wide gene expression from a well-designed experiment using Affymetrix microarrays. The experiment profiled eight genetically divergent barley cultivars each with three biological replicates. The dataset so obtained confers a balanced and idealized structure for the present analysis. The methods were evaluated on their sensitivity for detecting differentially expressed genes, reproducibility of expression values across replicates, and consistency in calling differentially expressed genes. The number of genes detected as differentially expressed among methods differed by a factor of two or more at a given false discovery rate (FDR) level. Moreover, we propose the use of genes containing single feature polymorphisms (SFPs) as an empirical test for comparison among methods for the ability to detect true differential gene expression on the basis that SFPs largely correspond to cis-acting expression regulators. The PDNN method demonstrated superiority over all other methods in every comparison, whilst the default Affymetrix MAS5.0 method was clearly inferior.ConclusionA comprehensive assessment of seven commonly used data extraction methods based on an extensive barley Affymetrix gene expression dataset has shown that the PDNN method has superior performance for the detection of differentially expressed genes.
BMC Genomics | 2014
Shengjie Yang; Yiyuan Liu; Ning Jiang; Jing Chen; Lindsey Leach; Zewei Luo; Minghui Wang
BackgroundWhile the possible sources underlying the so-called ‘missing heritability’ evident in current genome-wide association studies (GWAS) of complex traits have been actively pursued in recent years, resolving this mystery remains a challenging task. Studying heritability of genome-wide gene expression traits can shed light on the goal of understanding the relationship between phenotype and genotype. Here we used microarray gene expression measurements of lymphoblastoid cell lines and genome-wide SNP genotype data from 210 HapMap individuals to examine the heritability of gene expression traits.ResultsHeritability levels for expression of 10,720 genes were estimated by applying variance component model analyses and 1,043 expression quantitative loci (eQTLs) were detected. Our results indicate that gene expression traits display a bimodal distribution of heritability, one peak close to 0% and the other summit approaching 100%. Such a pattern of the within-population variability of gene expression heritability is common among different HapMap populations of unrelated individuals but different from that obtained in the CEU and YRI trio samples. Higher heritability levels are shown by housekeeping genes and genes associated with cis eQTLs. Both cis and trans eQTLs make comparable cumulative contributions to the heritability. Finally, we modelled gene-gene interactions (epistasis) for genes with multiple eQTLs and revealed that epistasis was not prevailing in all genes but made a substantial contribution in explaining total heritability for some genes analysed.ConclusionsWe utilised a mixed effect model analysis for estimating genetic components from population based samples. On basis of analyses of genome-wide gene expression from four HapMap populations, we demonstrated detailed exploitation of the distribution of genetic heritabilities for expression traits from different populations, and highlighted the importance of studying interaction at the gene expression level as an important source of variation underlying missing heritability.
Genome Biology | 2007
Chenqi Lu; Ze Zhang; Lindsey Leach; M J Kearsey; Zewei Luo
A comment on D Vitkup, P Kharchenko and A Wagner: Influence of metabolic network structure and function on enzyme evolution.Genome Biol 2006, 7:R39.
PLOS Computational Biology | 2009
Minghui Wang; Xiaohua Hu; Gang Li; Lindsey Leach; Elena Potokina; Arnis Druka; Robbie Waugh; Michael J. Kearsey; Zewei Luo
It is well known that Affymetrix microarrays are widely used to predict genome-wide gene expression and genome-wide genetic polymorphisms from RNA and genomic DNA hybridization experiments, respectively. It has recently been proposed to integrate the two predictions by use of RNA microarray data only. Although the ability to detect single feature polymorphisms (SFPs) from RNA microarray data has many practical implications for genome study in both sequenced and unsequenced species, it raises enormous challenges for statistical modelling and analysis of microarray gene expression data for this objective. Several methods are proposed to predict SFPs from the gene expression profile. However, their performance is highly vulnerable to differential expression of genes. The SFPs thus predicted are eventually a reflection of differentially expressed genes rather than genuine sequence polymorphisms. To address the problem, we developed a novel statistical method to separate the binding affinity between a transcript and its targeting probe and the parameter measuring transcript abundance from perfect-match hybridization values of Affymetrix gene expression data. We implemented a Bayesian approach to detect SFPs and to genotype a segregating population at the detected SFPs. Based on analysis of three Affymetrix microarray datasets, we demonstrated that the present method confers a significantly improved robustness and accuracy in detecting the SFPs that carry genuine sequence polymorphisms when compared to its rivals in the literature. The method developed in this paper will provide experimental genomicists with advanced analytical tools for appropriate and efficient analysis of their microarray experiments and biostatisticians with insightful interpretation of Affymetrix microarray data.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Lindsey Leach; Lin Wang; Michael J. Kearsey; Zewei Luo
The availability of reliable genetic linkage maps is crucial for functional and evolutionary genomic analyses. Established theory and methods of genetic linkage analysis have made map construction a routine exercise in diploids. However, many evolutionarily, ecologically, and/or agronomically important species are autopolyploids, with autotetraploidy being a typical example. These species undergo much more complicated chromosomal segregation and recombination at meiosis than diploids. In addition, there is evidence of polyploidy-induced and highly dynamic changes in the structure of the genome. These polysomic characteristics indicate the inappropriateness of the theory and methods of linkage analysis in diploids for use in these species and a gap in the theory and methodology of tetraploid map construction. This paper presents a theoretical model and statistical framework for multilocus linkage analysis in autotetraploids for use with dominant and/or codominant DNA molecular markers. The theory and methods incorporate the essential features of allele segregation and recombination under tetrasomic inheritance and the major challenges in statistical modeling and marker data analysis. We validated the method and explored its statistical properties by intensive simulation study and demonstrated its utility by analysis of AFLP and SSR marker data from an outbred autotetraploid potato population.