Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindsey M. Solden is active.

Publication


Featured researches published by Lindsey M. Solden.


Current Opinion in Microbiology | 2016

The bright side of microbial dark matter: lessons learned from the uncultivated majority.

Lindsey M. Solden; Karen G. Lloyd; Kelly C. Wrighton

Microorganisms are the most diverse and abundant life forms on Earth. Yet, in many environments, only 0.1-1% of them have been cultivated greatly hindering our understanding of the microbial world. However, today cultivation is no longer a requirement for gaining access to information from the uncultivated majority. New genomic information from metagenomics and single cell genomics has provided insights into microbial metabolic cooperation and dependence, generating new avenues for cultivation efforts. Here we summarize recent advances from uncultivated phyla and discuss how this knowledge has influenced our understanding of the topology of the tree of life and metabolic diversity.


The ISME Journal | 2017

New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11

Lindsey M. Solden; David W. Hoyt; William B. Collins; Johanna E Plank; Rebecca A. Daly; Erik Hildebrand; Timothy J Beavers; Richard A. Wolfe; Carrie D. Nicora; Sam O. Purvine; Michelle Carstensen; Mary S. Lipton; Donald E. Spalinger; J.L. Firkins; Barbara A Wolfe; Kelly C. Wrighton

Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment.


Mbio | 2017

Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome

Mikayla A. Borton; Anice Sabag-Daigle; Jikang Wu; Lindsey M. Solden; Bridget S. O’Banion; Rebecca A. Daly; Richard A. Wolfe; Juan F. Gonzalez; Vicki H. Wysocki; Brian M. M. Ahmer; Kelly C. Wrighton

BackgroundSalmonella is one of the most significant food-borne pathogens to affect humans and agriculture. While it is well documented that Salmonella infection triggers host inflammation, the impacts on the gut environment are largely unknown. A CBA/J mouse model was used to evaluate intestinal responses to Salmonella-induced inflammation. In parallel, we evaluated chemically induced inflammation by dextran sodium sulfate (DSS) and a non-inflammation control. We profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from fecal and cecal samples. These data were correlated to the inflammation marker lipocalin-2 and short-chain fatty acid concentrations.ResultsWe demonstrated that inflammation, chemically or biologically induced, restructures the chemical and microbial environment of the gut over a 16-day period. We observed that the ten mice within the Salmonella treatment group had a variable Salmonella relative abundance, with three high responding mice dominated by >46% Salmonella at later time points and the remaining seven mice denoted as low responders. These low- and high-responding Salmonella groups, along with the chemical DSS treatment, established an inflammation gradient with chemical and low levels of Salmonella having at least 3 log-fold lower lipocalin-2 concentration than the high-responding Salmonella mice. Total short-chain fatty acid and individual butyrate concentrations each negatively correlated with inflammation levels. Microbial communities were also structured along this inflammation gradient. Low levels of inflammation, regardless of chemical or biological induction, enriched for Akkermansia spp. in the Verrucomicrobiaceae and members of the Bacteroidetes family S24-7. Relative to the control or low inflammation groups, high levels of Salmonella drastically decreased the overall microbial diversity, specifically driven by the reduction of Alistipes and Lachnospiraceae in the Bacteroidetes and Firmicutes phyla, respectively. Conversely, members of the Enterobacteriaceae and Lactobacillus were positively correlated to high levels of Salmonella-induced inflammation.ConclusionsOur results show that enteropathogenic infection and intestinal inflammation are interrelated factors modulating gut homeostasis. These findings may prove informative with regard to prophylactic or therapeutic strategies to prevent disruption of microbial communities, or promote their restoration.


Nature Communications | 2017

Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions

Jordan C. Angle; Timothy H. Morin; Lindsey M. Solden; Adrienne B. Narrowe; Garrett J. Smith; Mikayla A. Borton; Camilo Rey-Sanchez; Rebecca A. Daly; Golnazalsdat Mirfenderesgi; David W. Hoyt; William J. Riley; Christopher S. Miller; Gil Bohrer; Kelly C. Wrighton

The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats. In contrast, here we show clear geochemical and biological evidence for methane production in well-oxygenated soils of a freshwater wetland. A comparison of oxic to anoxic soils reveal up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recover the first near-complete genomes for a novel methanogen species, and show acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanothrix paradoxum, is prevalent across methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimate that up to 80% of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together, our findings challenge a widely held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.Methane production is traditionally not found in oxygenated soils, a paradigm incorporated in global greenhouse gas modelling efforts. Here the authors show geochemical and biological evidence of active methanogenesis in bulk-oxic wetland soils, attributing up to 80% of the total methane budget for the site.


Nature microbiology | 2018

Host-linked soil viral ecology along a permafrost thaw gradient

Joanne B. Emerson; Simon Roux; Jennifer R. Brum; Benjamin Bolduc; Ben J. Woodcroft; Ho Bin Jang; Caitlin M. Singleton; Lindsey M. Solden; Adrian E. Naas; Joel A. Boyd; Suzanne B. Hodgkins; Rachel M. Wilson; Gareth Trubl; Changsheng Li; Steve Frolking; Phillip B. Pope; Kelly C. Wrighton; Patrick M. Crill; Jeffrey P. Chanton; Scott R. Saleska; Gene W. Tyson; Virginia I. Rich; Matthew B. Sullivan

Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1–7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8–10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.The recovery of viral populations from peatland soils across a permafrost thaw gradient provides insights into soil viral diversity, their hosts and the potential impacts on carbon cycling in this environment.


bioRxiv | 2018

Evidence of independent acquisition and adaption of ultra-small bacteria to human hosts across the highly diverse yet reduced genomes of the phylum Saccharibacteria

Jeffrey S. McLean; Batbileg Bor; Thao T. To; Quanhui Liu; Kristopher A Kearns; Lindsey M. Solden; Kelly C. Wrighton; Xuesong He; Wenyuan Shi

Recently, we discovered that a member of the Saccharibacteria/TM7 phylum (strain TM7x) isolated from the human oral cavity, has an ultra-small cell size (200-300nm), a highly reduced genome (705 Kbp) with limited de novo biosynthetic capabilities, and a very novel lifestyle as an obligate epibiont on the surface of another bacterium 1. There has been considerable interest in uncultivated phyla, particularly those that are now classified as the proposed candidate phyla radiation (CPR) reported to include 35 or more phyla and are estimated to make up nearly 15% of the domain Bacteria. Most members of the larger CPR group share genomic properties with Saccharibacteria including reduced genomes (<1Mbp) and lack of biosynthetic capabilities, yet to date, strain TM7x represents the only member of the CPR that has been cultivated and is one of only three CPR routinely detected in the human body. Through small subunit ribosomal RNA (SSU rRNA) gene surveys, members of the Saccharibacteria phylum are reported in many environments as well as within a diversity of host species and have been shown to increase dramatically in human oral and gut diseases. With a single copy of the 16S rRNA gene resolved on a few limited genomes, their absolute abundance is most often underestimated and their potential role in disease pathogenesis is therefore underappreciated. Despite being an obligate parasite dependent on other bacteria, six groups (G1-G6) are recognized using SSU rRNA gene phylogeny in the oral cavity alone. At present, only genomes from the G1 group, which includes related and remarkably syntenic environmental and human oral associated representatives1, have been uncovered to date. In this study we systematically captured the spectrum of known diversity in this phylum by reconstructing completely novel Class level genomes belonging to groups G3, G6 and G5 through cultivation enrichment and/or metagenomic binning from humans and mammalian rumen. Additional genomes for representatives of G1 were also obtained from modern oral plaque and ancient dental calculus. Comparative analysis revealed remarkable divergence in the host-associated members across this phylum. Within the human oral cavity alone, variation in as much as 70% of the genes from nearest oral clade (AAI 50%) as well as wide GC content variation is evident in these newly captured divergent members (G3, G5 and G6) with no environmental relatives. Comparative analyses suggest independent episodes of transmission of these TM7 groups into humans and convergent evolution of several key functions during adaptation within hosts. In addition, we provide evidence from in vivo collected samples that each of these major groups are ultra-small in size and are found attached to larger cells.


Nature microbiology | 2018

Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem

Lindsey M. Solden; Adrian E. Naas; Simon Roux; Rebecca A. Daly; William B. Collins; Carrie D. Nicora; Sam O. Purvine; David W. Hoyt; Julia Schückel; Bodil Jørgensen; William G. T. Willats; Donald E. Spalinger; J.L. Firkins; Mary S. Lipton; Matthew B. Sullivan; Phillip B. Pope; Kelly C. Wrighton

Because of their agricultural value, there is a great body of research dedicated to understanding the microorganisms responsible for rumen carbon degradation. However, we lack a holistic view of the microbial food web responsible for carbon processing in this ecosystem. Here, we sampled rumen-fistulated moose, allowing access to rumen microbial communities actively degrading woody plant biomass in real time. We resolved 1,193 viral contigs and 77 unique, near-complete microbial metagenome-assembled genomes, many of which lacked previous metabolic insights. Plant-derived metabolites were measured with NMR and carbohydrate microarrays to quantify the carbon nutrient landscape. Network analyses directly linked measured metabolites to expressed proteins from these unique metagenome-assembled genomes, revealing a genome-resolved three-tiered carbohydrate-fuelled trophic system. This provided a glimpse into microbial specialization into functional guilds defined by specific metabolites. To validate our proteomic inferences, the catalytic activity of a polysaccharide utilization locus from a highly connected metabolic hub genome was confirmed using heterologous gene expression. Viral detected proteins and linkages to microbial hosts demonstrated that phage are active controllers of rumen ecosystem function. Our findings elucidate the microbial and viral members, as well as their metabolic interdependencies, that support in situ carbon degradation in the rumen ecosystem.A combination of proteomics, metagenome-assembled genomes and heterologous gene expression experiments reveals a trophic system for carbon utilization in the moose rumen microbiome and provides insights into phage dynamics in this ecosystem.


Mbio | 2018

Candidatus Paraporphyromonas polyenzymogenes encodes multi-modular cellulases linked to the type IX secretion system.

Adrian E. Naas; Lindsey M. Solden; A. D. Norbeck; Heather M. Brewer; L. H. Hagen; I. M. Heggenes; A. C. McHardy; Roderick I. Mackie; Ljiljana Paša-Tolić; Vincentius Gerardus Henricus Eijsink; Nicole M. Koropatkin; M. Hess; Kelly C. Wrighton; P. B. Pope

BackgroundIn nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family (“Candidatus MH11”) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa.ResultsThe first metabolic reconstruction of Ca. MH11-affiliated genome bins, with a particular focus on the provisionally named “Candidatus Paraporphyromonas polyenzymogenes”, illustrated their capacity to degrade various lignocellulosic substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific type IX secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from Ca. P. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected Ca. P. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans.ConclusionWe propose that Ca. P. polyenzymogene genotypes and other Ca. MH11 members actively degrade plant biomass in the rumen of cows, sheep and most likely other ruminants, utilizing singular and multi-domain catalytic CAZymes secreted through the T9SS. The discovery of a prominent role of multi-modular cellulases in the Gram-negative Bacteroidetes, together with similar findings for Gram-positive cellulosomal bacteria (Ruminococcus flavefaciens) and anaerobic fungi (Orpinomyces sp.), suggests that complex enzymes are essential and have evolved within all major cellulolytic dominions inherent to the rumen.


Nature microbiology | 2017

Finding life’s missing pieces

Lindsey M. Solden; Kelly C. Wrighton

The Uncultivated Bacteria and Archaea dataset is a foundational collection of 7,903 genomes from uncultivated microorganisms. It highlights how microbial diversity is readily recovered using current tools and existing metagenomic datasets to help piece together the tree of life.


Nucleic Acids Research | 2014

Molecular evolution of protein-RNA mimicry as a mechanism for translational control

Assaf Katz; Lindsey M. Solden; S. Betty Zou; William Wiley Navarre; Michael Ibba

Collaboration


Dive into the Lindsey M. Solden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Hoyt

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian E. Naas

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge