Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lindy Abas is active.

Publication


Featured researches published by Lindy Abas.


Cell | 2007

Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

Marta Michniewicz; Marcelo Kennel Zago; Lindy Abas; Dolf Weijers; Alois Schweighofer; Irute Meskiene; Marcus G. Heisler; Carolyn Ohno; Jing Zhang; Fang Huang; Rebecca Schwab; Detlef Weigel; Elliot M. Meyerowitz; Christian Luschnig; Remko Offringa; Jiří Friml

In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentified, with the PINOID kinase being the only known molecular component. Here, we identify PP2A phosphatase as an important regulator of PIN apical-basal targeting and auxin distribution. Genetic analysis, localization, and phosphorylation studies demonstrate that PP2A and PINOID both partially colocalize with PINs and act antagonistically on the phosphorylation state of their central hydrophilic loop, hence mediating PIN apical-basal polar targeting. Thus, in plants, polar sorting by the reversible phosphorylation of cargos allows for their conditional delivery to specific intracellular destinations. In the case of PIN proteins, this mechanism enables switches in the direction of intercellular auxin fluxes, which mediate differential growth, tissue patterning, and organogenesis.


Nature Cell Biology | 2006

Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism

Lindy Abas; René Benjamins; Nenad Malenica; Tomasz Paciorek; Justyna Wišniewska; Jeanette Moulinier Anzola; Tobias Sieberer; Ji rcaron; í Friml; Christian Luschnig

Root gravitropism describes the orientation of root growth along the gravity vector and is mediated by differential cell elongation in the root meristem. This response requires the coordinated, asymmetric distribution of the phytohormone auxin within the root meristem, and depends on the concerted activities of PIN proteins and AUX1 — members of the auxin transport pathway. Here, we show that intracellular trafficking and proteasome activity combine to control PIN2 degradation during root gravitropism. Following gravi-stimulation, proteasome-dependent variations in PIN2 localization and degradation at the upper and lower sides of the root result in asymmetric distribution of PIN2. Ubiquitination of PIN2 occurs in a proteasome-dependent manner, indicating that the proteasome is involved in the control of PIN2 turnover. Stabilization of PIN2 affects its abundance and distribution, and leads to defects in auxin distribution and gravitropic responses. We describe the effects of auxin on PIN2 localization and protein levels, indicating that redistribution of auxin during the gravitropic response may be involved in the regulation of PIN2 protein.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting

Jürgen Kleine-Vehn; Johannes Leitner; Marta Zwiewka; Michael Sauer; Lindy Abas; Christian Luschnig; Jiří Friml

All eukaryotic cells present at the cell surface a specific set of plasma membrane proteins that modulate responses to internal and external cues and whose activity is also regulated by protein degradation. We characterized the lytic vacuole-dependent degradation of membrane proteins in Arabidopsis thaliana by means of in vivo visualization of vacuolar targeting combined with quantitative protein analysis. We show that the vacuolar targeting pathway is used by multiple cargos including PIN-FORMED (PIN) efflux carriers for the phytohormone auxin. In vivo visualization of PIN2 vacuolar targeting revealed its differential degradation in response to environmental signals, such as gravity. In contrast to polar PIN delivery to the basal plasma membrane, which depends on the vesicle trafficking regulator ARF-GEF GNOM, PIN sorting to the lytic vacuolar pathway requires additional brefeldin A-sensitive ARF-GEF activity. Furthermore, we identified putative retromer components SORTING NEXIN1 (SNX1) and VACUOLAR PROTEIN SORTING29 (VPS29) as important factors in this pathway and propose that the retromer complex acts to retrieve PIN proteins from a late/pre-vacuolar compartment back to the recycling pathways. Our data suggest that ARF GEF- and retromer-dependent processes regulate PIN sorting to the vacuole in an antagonistic manner and illustrate instrumentalization of this mechanism for fine-tuning the auxin fluxes during gravitropic response.


The Plant Cell | 2010

Phosphorylation of Conserved PIN Motifs Directs Arabidopsis PIN1 Polarity and Auxin Transport

Fang Huang; Marcelo Kennel Zago; Lindy Abas; Arnoud van Marion; Carlos S. Galvan-Ampudia; Remko Offringa

This work identifies the Ser residues located in three evolutionarily conserved TPRXS(N/S) motifs within the PIN1 auxin efflux carrier hydrophilic loop as substrates of the PINOID kinase. It shows that reversible phosphorylation of these Ser residues by PINOID and possibly other kinases is necessary and sufficient for proper PIN1 polar localization, auxin distribution, and regulated plant development. Polar cell-to-cell transport of auxin by plasma membrane–localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of auxin flow is controlled by reversible phosphorylation of the PIN hydrophilic loop (PINHL). Here, we identified three evolutionarily conserved TPRXS(N/S) motifs within the PIN1HL and proved that the central Ser residues were phosphorylated by the PINOID (PID) kinase. Loss-of-phosphorylation PIN1:green fluorescent protein (GFP) (Ser to Ala) induced inflorescence defects, correlating with their basal localization in the shoot apex, and induced internalization of PIN1:GFP during embryogenesis, leading to strong embryo defects. Conversely, phosphomimic PIN1:GFP (Ser to Glu) showed apical localization in the shoot apex but did not rescue pin1 inflorescence defects. Both loss-of-phosphorylation and phosphomimic PIN1:GFP proteins were insensitive to PID overexpression. The basal localization of loss-of-phosphorylation PIN1:GFP increased auxin accumulation in the root tips, partially rescuing PID overexpression-induced root collapse. Collectively, our data indicate that reversible phosphorylation of the conserved Ser residues in the PIN1HL by PID (and possibly by other AGC kinases) is required and sufficient for proper PIN1 localization and is thus essential for generating the differential auxin distribution that directs plant development.


Developmental Cell | 2011

Cytokinin Modulates Endocytic Trafficking of PIN1 Auxin Efflux Carrier to Control Plant Organogenesis

Peter Marhavý; Agnieszka Bielach; Lindy Abas; Anas Abuzeineh; Jérôme Duclercq; Hirokazu Tanaka; Markéta Pařezová; Jan Petrášek; Jiří Friml; Jürgen Kleine-Vehn; Eva Benková

Cytokinin is an important regulator of plant growth and development. In Arabidopsis thaliana, the two-component phosphorelay mediated through a family of histidine kinases and response regulators is recognized as the principal cytokinin signal transduction mechanism activating the complex transcriptional response to control various developmental processes. Here, we identified an alternative mode of cytokinin action that uses endocytic trafficking as a means to direct plant organogenesis. This activity occurs downstream of known cytokinin receptors but through a branch of the cytokinin signaling pathway that does not involve transcriptional regulation. We show that cytokinin regulates endocytic recycling of the auxin efflux carrier PINFORMED1 (PIN1) by redirecting it for lytic degradation in vacuoles. Stimulation of the lytic PIN1 degradation is not a default effect for general downregulation of proteins from plasma membranes, but a specific mechanism to rapidly modulate the auxin distribution in cytokinin-mediated developmental processes.


Developmental Cell | 2012

GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses

Ryan Whitford; Ana Fernandez; Ricardo Tejos; Amparo Cuéllar Pérez; Jürgen Kleine-Vehn; Steffen Vanneste; Andrzej Drozdzecki; Johannes Leitner; Lindy Abas; Maarten Aerts; Kurt Hoogewijs; Pawel Radoslaw Baster; Ruth De Groodt; Yao-Cheng Lin; Veronique Storme; Yves Van de Peer; Tom Beeckman; Annemieke Madder; Bart Devreese; Christian Luschnig; Jiri Friml; Pierre Hilson

Growth and development are coordinated by an array of intercellular communications. Known plant signaling molecules include phytohormones and hormone peptides. Although both classes can be implicated in the same developmental processes, little is known about the interplay between phytohormone action and peptide signaling within the cellular microenvironment. We show that genes coding for small secretory peptides, designated GOLVEN (GLV), modulate the distribution of the phytohormone auxin. The deregulation of the GLV function impairs the formation of auxin gradients and alters the reorientation of shoots and roots after a gravity stimulus. Specifically, the GLV signal modulates the trafficking dynamics of the auxin efflux carrier PIN-FORMED2 involved in root tropic responses and meristem organization. Our work links the local action of secretory peptides with phytohormone transport.


Analytical Biochemistry | 2010

Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation

Lindy Abas; Christian Luschnig

Isolation of a microsomal membrane fraction is a common procedure in studies involving membrane proteins. By conventional definition, microsomal membranes are collected by centrifugation of a postmitochondrial fraction at 100,000g in an ultracentrifuge, a method originally developed for large amounts of mammalian tissue. We present a method for isolating microsomal-type membranes from small amounts of Arabidopsis thaliana plant material that does not rely on ultracentrifugation but instead uses the lower relative centrifugal force (21,000g) of a microcentrifuge. We show that the 21,000g pellet is equivalent to that obtained at 100,000g and that it contains all of the membrane fractions expected in a conventional microsomal fraction. Our method incorporates specific manipulation of sample density throughout the procedure, with minimal preclearance, minimal volumes of extraction buffer, and minimal sedimentation pathlength. These features allow maximal membrane yields, enabling membrane isolation from limited amounts of material. We further demonstrate that conventional ultracentrifuge-based protocols give submaximal yields due to losses during early stages of the procedure; that is, extensive amounts of microsomal-type membranes can sediment prematurely during the typical preclearance steps. Our protocol avoids such losses, thereby ensuring maximal yield and a representative total membrane fraction. The principles of our method can be adapted for nonplant material.


British Journal of Haematology | 1995

The Pasteur effect in human platelets: implications for storage and metabolic control

Michael Guppy; Lindy Abas; Peter G. Arthur; Maxwell E. Whisson

Summary. The Pasteur effect and the associated acidosis have long been considered a major cause of platelet death during storage. We have investigated this phenomenon using a defined platelet preparation and a system whereby the oxidative and glycolytic contributions to total ATP production can be measured over a range of oxygen concentrations from saturating (pO2=158mmHg) to anoxic (pO2=OmmHg). Platelets do not show a Pasteur effect until the pO2 decreases to & 2′OmmHg, whereupon lactate production increases 1‐5‐fold. The Pasteur effect is therefore not a likely cause of platelet death during storage where pO2 in a storage bag typically drops to no less than 50mmHg. The data also have implications for the role of oxygen diffusion in oxidative metabolism, and for the compensatory nature of the Pasteur effect. As platelets are relatively small cells, and the onset of the Pasteur effect occurs at a relatively low oxygen concentration, diffusion may limit the rate of oxygen consumption in most other (larger) cells. The Pasteur effect is only fully compensative if the P/O2 ratio used for the calculations is lower than the conventional one. Since recent research strongly suggests that the conventional P/O2 ratio is too high, examples of fully compensative Pasteur effects may be more common than the literature suggests.


Plant Journal | 2011

A dominant negative mutant of protein kinase CK2 exhibits altered auxin responses in Arabidopsis

Maria Mar Marquès-Bueno; Jordi Moreno-Romero; Lindy Abas; Roberto De Michele; M. Carmen Martínez

Protein kinase CK2 is a pleiotropic Ser/Thr kinase, evolutionary conserved in eukaryotes. Studies performed in different organisms, from yeast to humans, have highlighted the importance of CK2 in cell growth and cell-cycle control. However, the signalling pathways in which CK2 is involved have not been fully identified. In plants, the phytohormone auxin is a major regulator of cell growth. Recent discoveries have demonstrated that differential distribution of within auxin plant tissues is essential for developmental processes, and that this distribution is dependent on polar auxin transport. We report here that a dominant-negative mutant of CK2 (CK2mut) in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. However, CK2mut plants exhibit normal responses to exogenous indole-3-acetic acid (IAA) indicating that they are not affected in the perception of the hormone but upstream in the pathway. We demonstrate that mutant plants are not deficient in IAA but are impaired in its transport. Using genetic and pharmacological tools we show that CK2 activity depletion hinders correct formation of auxin gradients and leads to widespread changes in the expression of auxin-related genes. In particular, members of the auxin efflux carrier family (PINs), and the protein kinase PINOID, both key regulators of auxin fluxes, were misexpressed. PIN4 and PIN7 were also found mislocalized, with accumulation in endosomal bodies. We propose that CK2 functions in the regulation of auxin-signalling pathways, particularly in auxin transport.


Biochimica et Biophysica Acta | 1996

Carbohydrate metabolism in human platelets in a low glucose medium under aerobic conditions

Xianwa Niu; Peter G. Arthur; Lindy Abas; Max Whisson; Michael Guppy

The metabolism of human platelets has been the subject of investigation for at least three decades, at the level of basic metabolism, and because of the increasing requirement for platelet storage. Platelets are relatively active metabolically and are typical cells in terms of fuels and metabolic pathways. They contain glycogen and utilize glucose and demonstrate aerobic glycolysis and carbohydrate oxidation. Both glycolysis and carbohydrate oxidation contribute significantly to total ATP turnover, so platelets are an ideal system in which to study the partitioning of carbohydrate metabolism between the two available fuels and the two available pathways, in the presence of adequate oxygen. We have designed a system whereby we can study carbohydrate metabolism in relatively pure human platelets, under sterile conditions, over long periods. The system enables us to determine total ATP turnover and, with the aid of a mathematical model, the contribution to this turnover of glycolysis and the oxidation of glucose/glycogen and lactate. When glucose and glycogen are present, most of the glucose and glycogen utilised is converted to lactate, but lactate is being oxidised at this time. When glucose/glycogen stores are exhausted lactate oxidation continues and increases with the result that carbohydrate oxidation accounts for 41% of total ATP turnover over 48 h.

Collaboration


Dive into the Lindy Abas's collaboration.

Top Co-Authors

Avatar

Michael Guppy

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jiří Friml

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter G. Arthur

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Xianwa Niu

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge