Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Line Elnif Thomsen is active.

Publication


Featured researches published by Line Elnif Thomsen.


Infection and Immunity | 2007

Molecular Epidemiology and Dynamics of Pseudomonas aeruginosa Populations in Lungs of Cystic Fibrosis Patients

Lars Jelsbak; Helle Krogh Johansen; Anne Louise Viborg Frost; Regitze Thøgersen; Line Elnif Thomsen; Oana Ciofu; Lei Yang; Janus A. J. Haagensen; Niels Høiby; Søren Molin

ABSTRACT The ability to establish lifelong persistent infections is a fundamental aspect of the interactions between many pathogenic microorganisms and their mammalian hosts. One example is chronic lung infections by the opportunistic pathogen Pseudomonas aeruginosa in cystic fibrosis (CF) patients. This infection process is associated with extensive genetic adaptation and microevolution of the infecting bacteria. Through investigations of P. aeruginosa populations and infection dynamics in a group of CF patients followed at the Danish CF Clinic in Copenhagen, we have identified two distinct and dominant clones that have evolved into highly successful colonizers of CF patient airways. A significant component of the evolutionary success of these two clones has been their efficient transmissibility among the CF patients. The two clones have been present and transmitted among different CF patients for more than 2 decades. Our data also suggest that the P. aeruginosa population structure in the CF patient airways has been influenced by competition between different clones and that the two dominant clones have been particularly competitive within the lungs, which may add to their overall establishment success. In contrast, we show that adaptive traits commonly associated with establishment of chronic P. aeruginosa infections of CF patients, such as transition to the mucoid phenotype and production of virulence factors, play minor roles in the ability of the two dominant clones to spread among patients and cause long-term chronic infections. These findings suggest that hitherto-unrecognized evolutionary pathways may be involved in the development of successful and persistent P. aeruginosa colonizers of CF patient lungs.


Environmental Microbiology | 2010

Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts

Martin Holm Rau; Susse Kirkelund Hansen; Helle Krogh Johansen; Line Elnif Thomsen; Christopher T. Workman; Kristian Fog Nielsen; Lars Jelsbak; Niels Høiby; Lei Yang; Søren Molin

Pseudomonas aeruginosa is an opportunistic pathogen ubiquitous to the natural environment but with the capability of moving to the host environment. Long-term infection of the airways of cystic fibrosis patients is associated with extensive genetic adaptation of P. aeruginosa, and we have studied cases of the initial stages of infection in order to characterize the early adaptive processes in the colonizing bacteria. A combination of global gene expression analysis and phenotypic characterization of longitudinal isolates from cystic fibrosis patients revealed well-known characteristics such as conversion to a mucoid phenotype by mucA mutation and increased antibiotic resistance by nfxB mutation. Additionally, upregulation of the atu operon leading to enhanced growth on leucine provides a possible example of metabolic optimization. A detailed investigation of the mucoid phenotype uncovered profound pleiotropic effects on gene expression including reduction of virulence factors and the Rhl quorum sensing system. Accordingly, mucoid isolates displayed a general reduction of virulence in the Caenorhabditis elegans infection model, altogether suggesting that the adaptive success of the mucoid variant extends beyond the benefits of alginate overproduction. In the overall perspective the global phenotype of the adapted variants appears to place them on paths in direction of fully adapted strains residing in long-term chronically infected patients.


PLOS ONE | 2012

Polyamines are required for virulence in Salmonella enterica serovar Typhimurium.

Lotte Jelsbak; Line Elnif Thomsen; Inke Wallrodt; Peter Ruhdal Jensen; John Elmerdahl Olsen

Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection, indicating that these polyamines function as an environmental signal that primes S. Typhimurium for intracellular survival. Accordingly, experiments addressed at elucidating the roles of these polyamines in infection revealed that expression of genes from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression of essential virulence loci. Moreover, our data implicate these polyamines as key signals in S. Typhimurium virulence.


BMC Microbiology | 2010

The heme sensing response regulator HssR in Staphylococcus aureus

Line Elnif Thomsen; Caroline Trebbien Gottlieb; Sanne Gottschalk; Tim T Wodskou; Hans-Henrik Kristensen; Lone Gram; Hanne Ingmer

BackgroundHost defence peptides (HDPs), also known as antimicrobial peptides (AMPs), have emerged as potential new therapeutics and their antimicrobial spectrum covers a wide range of target organisms. However, the mode of action and the genetics behind the bacterial response to HDPs is incompletely understood and such knowledge is required to evaluate their potential as antimicrobial therapeutics. Plectasin is a recently discovered HDP active against Gram-positive bacteria with the human pathogen, Staphylococcus aureus (S. aureus) being highly susceptible and the food borne pathogen, Listeria monocytogenes (L. monocytogenes) being less sensitive. In the present study we aimed to use transposon mutagenesis to determine the genetic basis for S. aureus and L. monocytogenes susceptibility to plectasin.ResultsIn order to identify genes that provide susceptibility to plectasin we constructed bacterial transposon mutant libraries of S. aureus NCTC8325-4 and L. monocytogenes 4446 and screened for increased resistance to the peptide. No resistant mutants arose when L. monocytogenes was screened on plates containing 5 and 10 fold Minimal Inhibitory Concentration (MIC) of plectasin. However, in S. aureus, four mutants with insertion in the heme response regulator (hssR) were 2-4 fold more resistant to plectasin as compared to the wild type. The hssR mutation also enhanced resistance to the plectasin-like defensin eurocin, but not to other classes of HDPs or to other stressors tested. Addition of plectasin did not influence the expression of hssR or hrtA, a gene regulated by HssR. The genome of L. monocytogenes LO28 encodes a putative HssR homologue, RR23 (in L. monocytogenes EGD-e lmo2583) with 48% identity to the S. aureus HssR, but a mutation in the rr23 gene did not change the susceptibility of L. monocytogenes to plectasin.ConclusionsS. aureus HssR, but not the homologue RR23 from L. monocytogenes, provides susceptibility to the defensins plectasin and eurocin. Our data suggest that a functional difference between response regulators HssR and RR23 is responsible for the difference in plectasin susceptibility observed between S. aureus and L. monocytogenes.Background: Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs), have emerged as potential new therapeutics and their antimicrobial spectrum covers a wide range of target organisms. However, the mode of action and the genetics behind the bacterial response to HDPs is incompletely understood and such knowledge is required to evaluate their potential as antimicrobial therapeutics. Plectasin is a recently discovered HDP active against Gram-positive bacteria with the human pathogen, Staphylococcus aureus (S. aureus) being highly susceptible and the food borne pathogen, Listeria monocytogenes (L. monocytogenes) being less sensitive. In the present study we aimed to use transposon mutagenesis to determine the genetic basis for S. aureus and L. monocytogenes susceptibility to plectasin. Results: In order to identify genes that provide susceptibility to plectasin we constructed bacterial transposon mutant libraries of S. aureus NCTC8325-4 and L. monocytogenes 4446 and screened for increased resistance to the peptide. No resistant mutants arose when L. monocytogenes was screened on plates containing 5 and 10 fold Minimal Inhibitory Concentration (MIC) of plectasin. However, in S. aureus, four mutants with insertion in the heme response regulator (hssR) were 2-4 fold more resistant to plectasin as compared to the wild type. The hssR mutation also enhanced resistance to the plectasin-like defensin eurocin, but not to other classes of HDPs or to other stressors tested. Addition of plectasin did not influence the expression of hssR or hrtA, a gene regulated by HssR. The genome of L. monocytogenes LO28 encodes a putative HssR homologue, RR23 (in L. monocytogenes EGD-e lmo2583) with 48% identity to the S. aureus HssR, but a mutation in the rr23 gene did not change the susceptibility of L. monocytogenes to plectasin. Conclusions: S. aureus HssR, but not the homologue RR23 from L. monocytogenes, provides susceptibility to the defensins plectasin and eurocin. Our data suggest that a functional difference between response regulators HssR and RR23 is responsible for the difference in plectasin susceptibility observed between S. aureus and L. monocytogenes. * Correspondence: [email protected] Department of Veterinary Disease Biology, University of Copenhagen, DK1870 Frederiksberg C, Denmark Full list of author information is available at the end of the article Thomsen et al. BMC Microbiology 2010, 10:307 http://www.biomedcentral.com/1471-2180/10/307


Applied and Environmental Microbiology | 2006

Caenorhabditis elegans Is a Model Host for Listeria monocytogenes

Line Elnif Thomsen; Sandra S. Slutz; Man-Wah Tan; Hanne Ingmer

ABSTRACT Here we report that Caenorhabditis elegans nematodes fed Listeria monocytogenes die over the course of several days, as a consequence of an accumulation of bacteria in the worm intestine. Mutant strains previously shown to be important for virulence in mammalian models were also found to be attenuated in their virulence in C. elegans. However, ActA, which is required for actin-based intracellular motility, appears to be dispensable during infection of C. elegans, indicating that L. monocytogenes remains extracellular in C. elegans.


Microbiology | 2002

ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium.

Line Elnif Thomsen; John Elmerdahl Olsen; John W. Foster; Hanne Ingmer

Components of the ATP-dependent Clp protease complex are found in a wide range of prokaryotic cells and they are often expressed as part of the cellular stress response. To investigate the physiological role of the proteolytic subunit, ClpP, in Salmonella enterica serovar Typhimurium (S. typhimurium) an in-frame deletion of the clpP gene was constructed. Growth experiments revealed that clpP is important for the ability of S. typhimurium to grow under various stressful conditions, such as low pH, elevated temperature and high salt concentrations. Since the stationary-phase sigma factor, RpoS, is a target of the Clp proteolytic complex, the effect of the clpP deletion in the absence of RpoS was examined; it was observed that growth of the S. typhimurium clpP mutant is affected in both an RpoS-dependent and an RpoS-independent manner. Analysis of the degradation of abnormal puromycyl-containing polypeptides showed that ClpP participates in the proteolysis of such proteins in S. typhimurium. These findings prompted an investigation of the growth of an Escherichia coli clpP mutant under various stress conditions. The growth of this E. coli mutant was affected by heat, salt and low pH, although not to the same extent as observed for the S. typhimurium clpP mutant. The results of this study indicate that the S. typhimurium clpP mutant is generally more sensitive to environmental stress than the E. coli clpP mutant and it is proposed that this is due to a reduced ability to degrade misfolded proteins generated under these conditions.


International Journal of Food Microbiology | 2008

Processing plant persistent strains of Listeria monocytogenes appear to have a lower virulence potential than clinical strains in selected virulence models.

Anne Krogh Jensen; Line Elnif Thomsen; Rikke L. Jørgensen; Marianne Halberg Larsen; Bent B. Roldgaard; Bjarke Bak Christensen; Birte Fonnesbech Vogel; Lone Gram; Hanne Ingmer

Listeria monocytogenes is an important foodborne bacterial pathogen that can colonize food processing equipment. One group of genetically similar L. monocytogenes strains (RAPD type 9) was recently shown to reside in several independent fish processing plants. Persistent strains are likely to contaminate food products, and it is important to determine their virulence potential to evaluate risk to consumers. We compared the behaviour of food processing persistent and clinical L. monocytogenes strains in four virulence models: Adhesion, invasion and intracellular growth was studied in an epithelial cell line, Caco-2; time to death in a nematode model, Caenorhabditis elegans and in a fruit fly model, Drosophila melanogaster and fecal shedding in a guinea pig model. All strains adhered to and grew in Caco-2 cells in similar levels. When exposed to 10(6) CFU/ml, two strains representing the persistent RAPD type 9 invaded Caco-2 cells in lower numbers (10(2)-10(3) CFU/ml) as compared to the four other strains (10(4)-10(6) CFU/ml), including food and human clinical strains. In the D. melanogaster model, the two RAPD type 9 strains were among the slowest to kill. Similarly, the time to reach 50% killed C. elegans worms was longer (110 h) for the RAPD type 9 strains than for the other four strains (80 h). The Scott A strain and one RAPD type 9 strain were suspended in whipping cream before being fed to guinea pigs and the persistent RAPD type 9 strain was isolated from feces in a lower level (approximately 10(2) CFU/g) than the Scott A strain (approximately 10(5) CFU/g) (P<0.05). The addition of NaCl has been shown to cause autoaggregation and increases adhesion of L. monocytogenes to plastic. However, growth in the presence of NaCl did not alter the behaviour of the tested L. monocytogenes strains in the virulence models. Overall, the two strains representing a very common fish processing plant persistent group (RAPD type 9) appear to have a lower virulence potential in all four virulence models than Scott A and a strain isolated from a clinical case of listeriosis.


Acta Veterinaria Scandinavica | 2007

Effects of crp deletion in Salmonella enterica serotype Gallinarum

Valentina Rosu; Mark Simon Chadfield; Antonella Santona; Jens Peter Christensen; Line Elnif Thomsen; Salvatore Rubino; John Elmerdahl Olsen

BackgroundSalmonella enterica serotype Gallinarum (S. Gallinarum) remains an important pathogen of poultry, especially in developing countries. There is a need to develop effective and safe vaccines. In the current study, the effect of crp deletion was investigated with respect to virulence and biochemical properties and the possible use of a deletion mutant as vaccine candidate was preliminarily tested.MethodsMutants were constructed in S. Gallinarum by P22 transduction from Salmonella Typhimurium (S. Typhimurium) with deletion of the crp gene. The effect was characterized by measuring biochemical properties and by testing of invasion in a chicken loop model and by challenge of six-day-old chickens. Further, birds were immunized with the deleted strain and challenged with the wild type isolate.ResultsThe crp deletions caused complete attenuation of S. Gallinarum. This was shown by ileal loop experiments not to be due to significantly reduced invasion. Strains with such deletions may have vaccine potential, since oral inoculatoin with S. Gallinarum Δcrp completely protected against challenge with the same dose of wild type S. Gallinarum ten days post immunization. Interestingly, the mutations did not cause the same biochemical and growth changes to the two biotypes of S. Gallinarum. All biochemical effects but not virulence could be complemented by providing an intact crp- gene from S. Typhimurium on the plasmid pSD110.ConclusionTransduction of a Tn10 disrupted crp gene from S. Typhimurium caused attenuation in S. Gallinarum and mutated strains are possible candidates for live vaccines against fowl typhoid.


BMC Microbiology | 2008

Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression.

Caroline Trebbien Gottlieb; Line Elnif Thomsen; Hanne Ingmer; Per Holse Mygind; Hans-Henrik Kristensen; Lone Gram

BackgroundHost defense peptides (HDPs), or antimicrobial peptides (AMPs), are important components of the innate immune system that bacterial pathogens must overcome to establish an infection and HDPs have been suggested as novel antimicrobial therapeutics in treatment of infectious diseases. Hence it is important to determine the natural variation in susceptibility to HDPs to ensure a successful use in clinical treatment regimes.ResultsStrains of two human bacterial pathogens, Listeria monocytogenes and Staphylococcus aureus, were selected to cover a wide range of origin, sub-type, and phenotypic behavior. Strains within each species were equally sensitive to HDPs and oxidative stress representing important components of the innate immune defense system. Four non-human peptides (protamine, plectasin, novicidin, and novispirin G10) were similar in activity profile (MIC value spectrum) to the human β-defensin 3 (HBD-3). All strains were inhibited by concentrations of hydrogen peroxide between 0.1% – 1.0%. Sub-selections of both species differed in expression of several virulence-related factors and in their ability to survive in human whole blood and kill the nematode virulence model Caenorhabditis elegans. For L. monocytogenes, proliferation in whole blood was paralleled by high invasion in Caco-2 cells and fast killing of C. elegans, however, no such pattern in phenotypic behavior was observed for S. aureus and none of the phenotypic differences were correlated to sensitivity to HDPs.ConclusionStrains of L. monocytogenes and S. aureus were within each species equally sensitive to a range of HDPs despite variations in subtype, origin, and phenotypic behavior. Our results suggest that therapeutic use of HDPs will not be hampered by occurrence of naturally tolerant strains of the two species investigated in the present study.


Applied and Environmental Microbiology | 2008

Chitin Hydrolysis by Listeria spp., Including L. monocytogenes

J. J. Leisner; Marianne Halberg Larsen; R. L. Jørgensen; L. Brøndsted; Line Elnif Thomsen; Hanne Ingmer

ABSTRACT Listeria spp., including the food-borne pathogen Listeria monocytogenes, are ubiquitous microorganisms in the environment and thus are difficult to exclude from food processing plants. The factors that contribute to their multiplication and survival in nature are not well understood, but the ability to catabolize various carbohydrates is likely to be very important. One major source of carbon and nitrogen in nature is chitin, an insoluble linear β-1,4-linked polymer of N-acetylglucosamine (GlcNAc). Chitin is found in cell walls of fungi and certain algae, in the cuticles of arthropods, and in shells and radulae of molluscs. In the present study, we demonstrated that L. monocytogenes and other Listeria spp. are able to hydrolyze α-chitin. The chitinolytic activity is repressed by the presence of glucose in the medium, suggesting that chitinolytic activity is subjected to catabolite repression. Activity is also regulated by temperature and is higher at 30°C than at 37°C. In L. monocytogenes EGD, chitin hydrolysis depends on genes encoding two chitinases, lmo0105 (chiB) and lmo1883 (chiA), but not on a gene encoding a putative chitin binding protein (lmo2467). The chiB and chiA genes are phylogenetically related to various well-characterized chitinases. The potential biological implications of chitinolytic activity of Listeria are discussed.

Collaboration


Dive into the Line Elnif Thomsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanne Ingmer

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Lone Gram

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inke Wallrodt

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Lotte Jelsbak

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastien Lemire

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge