Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Line Hjort is active.

Publication


Featured researches published by Line Hjort.


Acta Obstetricia et Gynecologica Scandinavica | 2014

Genetic, nongenetic and epigenetic risk determinants in developmental programming of type 2 diabetes

Allan Vaag; Charlotte Brøns; Linn Gillberg; Ninna S. Hansen; Line Hjort; Geeti Puri Arora; Nihal Thomas; Christa Broholm; Rasmus Ribel-Madsen; Louise G. Grunnet

Low birthweight (LBW) individuals and offspring of women with gestational diabetes mellitus (GDM) exhibit increased risk of developing type 2 diabetes (T2D) and associated cardiometabolic traits in adulthood, which for both groups may be mediated by adverse events and developmental changes in fetal life. T2D is a multifactorial disease occurring as a result of complicated interplay between genetic and both prenatal and postnatal nongenetic factors, and it remains unknown to what extent the increased risk of T2D associated with LBW or GDM in the mother may be due to, or confounded by, genetic factors. Indeed, it has been shown that genetic changes influencing risk of diabetes may also be associated with reduced fetal growth as a result of reduced insulin secretion and/or action. Similarly, increased risk of T2D among offspring could be explained by T2D susceptibility genes shared between the mother and her offspring. Epigenetic mechanisms may explain the link between factors operating in fetal life and later risk of developing T2D, but so far convincing evidence is lacking for epigenetic changes as a prime and direct cause of T2D. This review addresses recent literature on the early origins of adult disease hypothesis, with a special emphasis on the role of genetic compared with nongenetic and epigenetic risk determinants and disease mechanisms.


Diabetes | 2016

Gene Expression and DNA Methylation of PPARGC1A in Muscle and Adipose Tissue From Adult Offspring of Women With Diabetes in Pregnancy

Louise Kelstrup; Line Hjort; Azadeh Houshmand-Oeregaard; Tine D. Clausen; Ninna S. Hansen; Christa Broholm; Liv Borch-Johnsen; Elisabeth R. Mathiesen; Allan Vaag; Peter Damm

Prenatal exposure to maternal hyperglycemia is associated with an increased risk of later adverse metabolic health. Changes in the regulation of peroxisome proliferator–activated receptor-γ coactivator-1α (PPARGC1A) in skeletal muscle and subcutaneous adipose tissue (SAT) is suggested to play a role in the developmental programming of dysmetabolism based on studies of human subjects exposed to an abnormal intrauterine environment (e.g., individuals with a low birth weight). We studied 206 adult offspring of women with gestational diabetes mellitus (O-GDM) or type 1 diabetes (O-T1D) and of women from the background population (O-BP) using a clinical examination, oral glucose tolerance test, and gene expression and DNA methylation of PPARGC1A in skeletal muscle and SAT. Plasma glucose was significantly higher for both O-GDM and O-T1D compared with O-BP (P < 0.05). PPARGC1A gene expression in muscle was lower in O-GDM compared with O-BP (P = 0.0003), whereas no differences were found between O-T1D and O-BP in either tissue. PPARGC1A DNA methylation percentages in muscle and SAT were similar among all groups. Decreased PPARGC1A gene expression in muscle has previously been associated with abnormal insulin function and may thus contribute to the increased risk of metabolic disease in O-GDM. The unaltered PPARGC1A gene expression in muscle of O-T1D suggests that factors other than intrauterine hyperglycemia may contribute to the decreased PPARGC1A expression in O-GDM.


Clinical Epigenetics | 2017

Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy

Azadeh Houshmand-Oeregaard; Ninna S. Hansen; Line Hjort; Louise Kelstrup; Christa Broholm; Elisabeth R. Mathiesen; Tine D. Clausen; Peter Damm; Allan Vaag

BackgroundOffspring of women with diabetes in pregnancy are at increased risk of type 2 diabetes mellitus (T2DM), potentially mediated by epigenetic mechanisms. The adipokines leptin, adiponectin, and resistin (genes: LEP, ADIPOQ, RETN) play key roles in the pathophysiology of T2DM. We hypothesized that offspring exposed to maternal diabetes exhibit alterations in epigenetic regulation of subcutaneous adipose tissue (SAT) adipokine transcription.We studied adipokine plasma levels, SAT gene expression, and DNA methylation of LEP, ADIPOQ, and RETN in adult offspring of women with gestational diabetes (O-GDM, N = 82) or type 1 diabetes (O-T1DM, N = 67) in pregnancy, compared to offspring of women from the background population (O-BP, N = 57).ResultsCompared to O-BP, we found elevated plasma leptin and resistin levels in O-T1DM, decreased gene expression of all adipokines in O-GDM, decreased RETN expression in O-T1DM, and increased LEP and ADIPOQ methylation in O-GDM. In multivariate regression analysis, O-GDM remained associated with increased ADIPOQ methylation and decreased ADIPOQ and RETN gene expression and O-T1DM remained associated with decreased RETN expression after adjustment for potential confounders and mediators.ConclusionsIn conclusion, offspring of women with diabetes in pregnancy exhibit increased ADIPOQ DNA methylation and decreased ADIPOQ and RETN gene expression in SAT. However, altered methylation and expression levels were not reflected in plasma protein levels, and the functional implications of these findings remain uncertain.


The Journal of Clinical Endocrinology and Metabolism | 2017

Fetal hyperglycemia changes human preadipocyte function in adult life

Ninna S. Hansen; Klaudia Stanislawa Strasko; Line Hjort; Louise Kelstrup; Azadeh Houshmand-Øregaard; Maren Schrölkamp; Heidi S. Schultz; Camilla Scheele; Bente Klarlund Pedersen; Charlotte Ling; Tine D. Clausen; Peter Damm; Allan Vaag; Christa Broholm

Context Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design In total, we recruited 206 adult offspring comprising the two fetal hyperglycemic groups, O-GDM and O-T1DM, and, as a control group, offspring from the background population (O-BP). Subcutaneous fat biopsies were obtained and preadipocyte cell cultures were established from adult male O-GDM (n = 18, age 30.1 ± 2.5 years), O-T1DM (n = 18, age 31.6 ± 2.2 years), and O-BP (n = 16; age, 31.5 ± 2.7 years) and cultured in vitro. Main Outcome Measures First, we studied in vivo adipocyte histology. Second, we studied in vitro preadipocyte leptin secretion, gene expression, and LEP DNA methylation. This was studied in combination with in vitro preadipocyte lipogenesis, lipolysis, and mitochondrial respiration. Results We show that subcutaneous adipocytes from O-GDM are enlarged compared with O-BP adipocytes. Preadipocytes isolated from male O-GDM and O-T1DM and cultured in vitro displayed decreased LEP promoter methylation, increased leptin gene expression, and elevated leptin secretion throughout differentiation, compared with adipocytes established from male O-BP. In addition, the preadipocytes demonstrated functional defects including decreased maximal mitochondrial capacity with increased lipolysis and decreased ability to store fatty acids when challenged with 3 days of extra fatty acid supply. Conclusions Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease.


Diabetes Care | 2017

Adiposity, Dysmetabolic Traits and Earlier Onset of Female Puberty in Adolescent Offspring of Women With Gestational Diabetes Mellitus: A Clinical Study Within the Danish National Birth Cohort

Louise Groth Grunnet; Susanne Hansen; Line Hjort; Camilla Møller Madsen; Freja Bach Kampmann; Anne Cathrine B. Thuesen; Charlotta Granstrømi; Marin Strøm; Ekaterina Maslova; Ruth Frikke-Schmidt; Peter Damm; Jorge E. Chavarro; Frank B. Hu; Sjurdur F. Olsen; Allan Vaag

OBJECTIVE Offspring of pregnancies affected by gestational diabetes mellitus (GDM) are at increased risk of the development of type 2 diabetes. However, the extent to which these dysmetabolic traits may be due to offspring and/or maternal adiposity is unknown. We examined body composition and associated cardiometabolic traits in 561 9- to 16-year-old offspring of mothers with GDM and 597 control offspring. RESEARCH DESIGN AND METHODS We measured anthropometric characteristics; puberty status; blood pressure; and fasting glucose, insulin, C-peptide, and lipid levels; and conducted a DEXA scan in a subset of the cohort. Differences in the outcomes between offspring of mothers with GDM and control subjects were examined using linear and logistic regression models. RESULTS After adjustment for age and sex, offspring of mothers with GDM displayed higher weight, BMI, waist-to-hip ratio (WHR), systolic blood pressure, and resting heart rate and lower height. Offspring of mothers with GDM had higher total and abdominal fat percentages and lower muscle mass percentages, but these differences disappeared after correction for offspring BMI. The offspring of mothers with GDM displayed higher fasting plasma glucose, insulin, C-peptide, HOMA-insulin resistance (IR), and plasma triglyceride levels, whereas fasting plasma HDL cholesterol levels were decreased. Female offspring of mothers with GDM had an earlier onset of puberty than control offspring. Offspring of mothers with GDM had significantly higher BMI, WHR, fasting glucose, and HOMA-IR levels after adjustment for maternal prepregnancy BMI, and glucose and HOMA-IR remained elevated in the offspring of mothers with GDM after correction for both maternal and offspring BMIs. CONCLUSIONS In summary, adolescent offspring of women with GDM show increased adiposity, an adverse cardiometabolic profile, and earlier onset of puberty among girls. Increased fasting glucose and HOMA-IR levels among the offspring of mothers with GDM may be explained by the programming effects of hyperglycemia in pregnancy.


The American Journal of Clinical Nutrition | 2017

Maternal protein intake in pregnancy and offspring metabolic health at age 9–16 y: results from a Danish cohort of gestational diabetes mellitus pregnancies and controls

Ekaterina Maslova; Susanne Hansen; Louise Groth Grunnet; Marin Strøm; Anne A. Bjerregaard; Line Hjort; Freja Bach Kampmann; Camilla Møller Madsen; Ac Baun Thuesen; Bodil Hammer Bech; Thorhallur I. Halldorsson; Allan Vaag; Sjurdur F. Olsen

Background: Recent years have seen strong tendencies toward high-protein diets. However, the implications of higher protein intake, especially during developmentally sensitive periods, are poorly understood. Conversely, evidence on the long-term developmental consequences of low protein intake in free-living populations remains limited.Objective: We examined the association of protein intake in pregnancy with offspring metabolic health at age 9-16 y in a longitudinal cohort that oversampled pregnancies with gestational diabetes mellitus (GDM).Design: Six hundred eight women with an index pregnancy affected by gestational diabetes mellitus and 626 controls enrolled in the Danish National Birth Cohort were used for the analysis. Protein (total, animal, vegetable) intake was assessed by using a food-frequency questionnaire in gestational week 25. The offspring underwent a clinical examination including fasting blood samples and a dual-energy X-ray absorptiometry scan (subset of 650) from which metabolic outcomes were derived. Multivariable analyses were conducted applying a 1:1 substitution of carbohydrates for protein.Results: The mean ± SD protein intake in pregnancy was 93 ± 15 g/d (16% ± 3% of energy) in GDM-exposed women and 90 ± 14 g/d (16% ± 2% of energy) in control women. There were overall no associations between maternal protein intake and offspring fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR). We found that maternal total protein intake was associated with a tendency for a higher abdominal fat mass percentage (quartile 4 compared with quartile 1: 0.40 SD; 95% CI: -0.03, 0.83 SD; P = 0.07) in GDM-exposed offspring and a tendency for a higher total fat mass percentage among male offspring (quartile 4 compared with quartile 1: 0.33 SD; 95% CI: -0.01, 0.66 SD; P = 0.06), but a small sample size may have compromised the precision of the effect estimates. GDM-exposed offspring of mothers with a protein intake in the lowest decile (≤12.5% of energy compared with >12.5% of energy) had lower fasting insulin (ratio of geometric means: 0.82; 95% CI: 0.68, 0.99; P = 0.04) and a tendency toward lower HOMA-IR (ratio of geometric means: 0.82; 95% CI: 0.66, 1.02; P = 0.07), but there was no evidence of associations with body composition. Male offspring seemed to derive a similar benefit from a maternal low protein intake as did GDM-exposed offspring.Conclusions: Overall, our results provide little support for an association of maternal protein intake in pregnancy with measures of offspring metabolic health. Further studies in larger cohorts are needed to determine whether low maternal protein intake in pregnancy may improve glucose homeostasis in GDM-exposed and male offspring.


The Journal of Clinical Endocrinology and Metabolism | 2016

Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects

Ninna S. Hansen; Line Hjort; Christa Broholm; Linn Gillberg; Maren Schrölkamp; Heidi S. Schultz; Brynjulf Mortensen; Sine W. Jørgensen; Martin Friedrichsen; Jørgen F. P. Wojtaszewski; Bente Klarlund Pedersen; Allan Vaag

CONTEXT/OBJECTIVE Developmental programming of human muscle stem cells could in part explain why individuals born with low birth weight (LBW) have an increased risk of developing type 2 diabetes (T2D) later in life. We hypothesized that immature muscle stem cell functions including abnormal differentiation potential and metabolic function could link LBW with the risk of developing T2D. Design/Settings/Participants: We recruited 23 young men with LBW and 16 age-matched control subjects with normal birth weight. Biopsies were obtained from vastus lateralis, and muscle stem cells were isolated and cultured into fully differentiated myotubes. MAIN OUTCOME MEASURES We studied glucose uptake, glucose transporters, insulin signaling, key transcriptional markers of myotube maturity, selected site-specific DNA methylation, and mitochondrial gene expression. RESULTS We found reduced glucose uptake as well as decreased levels of glucose transporter-1 and -4 mRNA and of the Akt substrate of 160-kDa mRNA and protein in myotubes from LBW individuals compared with normal birth weight individuals. The myogenic differentiation markers, myogenin and myosin heavy chain 1 and 2, were decreased during late differentiation in LBW myotubes. Additionally, mRNA levels of the peroxisome proliferator-activated receptor-γ coactivator-1α and cytochrome c oxidase polypeptide 7A were reduced in LBW myotubes. Decreased gene expression was not explained by changes in DNA methylation levels. CONCLUSION We demonstrate transcriptional and metabolic alterations in cultured primary satellite cells isolated from LBW individuals after several cell divisions, pointing toward a retained intrinsic defect conserved in these myotubes.


Human Molecular Genetics | 2018

Increased expression of microRNA-15a and microRNA-15b in skeletal muscle from adult offspring of women with diabetes in pregnancy

Azadeh Houshmand-Oeregaard; Maren Schrölkamp; Louise Kelstrup; Ninna S. Hansen; Line Hjort; Anne Cathrine B. Thuesen; Christa Broholm; Elisabeth R. Mathiesen; Tine D. Clausen; Allan Vaag; Peter Damm

Offspring of women with diabetes in pregnancy exhibit skeletal muscle insulin resistance and are at increased risk of developing type 2 diabetes, potentially mediated by epigenetic mechanisms or changes in the expression of small non-coding microRNAs. Members of the miR-15 family can alter the expression or function of important proteins in the insulin signalling pathway, affecting insulin sensitivity and secretion. We hypothesized that exposure to maternal diabetes may cause altered expression of these microRNAs in offspring skeletal muscle, representing a potential underlying mechanism by which exposure to maternal diabetes leads to increased risk of cardiometabolic disease in offspring. We measured microRNA expression in skeletal muscle biopsies of 26- to 35-year-old offspring of women with either gestational diabetes (O-GDM, n = 82) or type 1 diabetes (O-T1DM, n = 67) in pregnancy, compared with a control group of offspring from the background population (O-BP, n = 57) from an observational follow-up study. Expression of both miR-15a and miR-15b was increased in skeletal muscle obtained from O-GDM (both P < 0.001) and O-T1DM (P = 0.024, P = 0.005, respectively) compared with O-BP. Maternal 2 h post OGTT glucose levels were positively associated with miR-15a expression (P = 0.041) in O-GDM after adjustment for confounders and mediators. In all groups collectively, miRNA expression was significantly positively associated with fasting plasma glucose, 2 h plasma glucose and HbA1c. We conclude that fetal exposure to maternal diabetes is associated with increased skeletal muscle expression of miR-15a and miR-15b and that this may contribute to development of metabolic disease in these subjects.


JCI insight | 2018

Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children

Line Hjort; David Martino; Louise Groth Grunnet; Haroon Naeem; Jovana Maksimovic; Anders Olsson; Cuilin Zhang; Charlotte Ling; Sjurdur F. Olsen; Richard Saffery; Allan Vaag

Offspring of women with gestational diabetes mellitus (GDM) are at increased risk of developing metabolic disease, potentially mediated by epigenetic mechanisms. We recruited 608 GDM and 626 control offspring from the Danish National Birth Cohort, aged between 9 and 16 years. DNA methylation profiles were measured in peripheral blood of 93 GDM offspring and 95 controls using the Illumina HumanMethylation450 BeadChip. Pyrosequencing was performed for validation/replication of putative GDM-associated, differentially methylated CpGs in additional 905 offspring (462 GDM, 444 control offspring). We identified 76 differentially methylated CpGs in GDM offspring compared with controls in the discovery cohort (FDR, P < 0.05). Adjusting for offspring BMI did not affect the association between methylation levels and GDM status for any of the 76 CpGs. Most of these epigenetic changes were due to confounding by maternal prepregnancy BMI; however, 13 methylation changes were independently associated with maternal GDM. Three prepregnancy BMI-associated CpGs (cg00992687 and cg09452568 of ESM1 and cg14328641 of MS4A3) were validated in the replication cohort, while cg09109411 (PDE6A) was found to be associated with GDM status. The identified methylation changes may reflect developmental programming of organ disease mechanisms and/or may serve as disease biomarkers.


European Journal of Clinical Nutrition | 2018

Maternal glycemic index and glycemic load in pregnancy and offspring metabolic health in childhood and adolescence—a cohort study of 68,471 mother–offspring dyads from the Danish National Birth Cohort

Ekaterina Maslova; Susanne Hansen; Louise Groth Grunnet; Marin Strøm; Anne A. Bjerregaard; Line Hjort; Freja Bach Kampmann; Camilla Møller Madsen; Ac Baun Thuesen; Bodil Hammer Bech; Thorhallur I. Halldorsson; Allan A. Vaag; Cuilin Zhang; Sjurdur F. Olsen

BackgroundHigh glycemic index (GI) and glycemic load (GL) as indicators of carbohydrate quality and quantity have been found to increase risk of metabolic outcomes in adults. Whether carbohydrate quality may influence metabolic programming already in early life is unknown. We examined the association of maternal GI and GL with offspring body mass index (BMI) in the first 7 years of life among 68,471 mother–offspring dyads from the Danish National Birth Cohort (DNBC). In a sub-cohort of offspring with clinical data (n = 1234) that included 608 dyads exposed to gestational diabetes mellitus (GDM), we also examined the relation to metabolic health at 9–16 years.MethodsMaternal GI and GL were quantified using a mid-pregnancy food frequency questionnaire. We used birth weight and length to calculate offspring’s ponderal index. Age- and sex-specific BMI z scores at 5 mo, 12 mo, and 7 y were standardized against WHO reference data. In the clinical cohort, we quantified body composition, HOMA-IR, and HOMA-B. We used multivariable mixed linear and Poisson regression to model the associations.ResultsMedian (IQR) of GI and GL were 83 (63–111) and 241 (180–333) g/day, respectively. We found that GI (Q4 vs. Q1:1.09, 95%CI: 1.03, 1.15) and GL (Q4 vs. Q1:1.10, 95%CI: 1.05, 1.16) modestly increased the relative risk of large-for gestational age (LGA). In the clinical sub-cohort, we observed a potential increase in offspring HOMA-IR, adiposity, and metabolic syndrome z score with higher maternal GI and GI. These associations were stronger among the GDM-exposed offspring, but the CI included the null value.ConclusionWe found associations of GI and GL in pregnancy with offspring LGA. Potential long-term benefits to offspring exposed to GDM need to be confirmed in larger, well-powered studies.

Collaboration


Dive into the Line Hjort's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Damm

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Linn Gillberg

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge