Lineke Begeman
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lineke Begeman.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
Mardik F. Leopold; Lineke Begeman; Judith van Bleijswijk; Lonneke L. IJsseldijk; Harry Witte; Andrea Gröne
Harbour porpoises (Phocoena phocoena) stranding in large numbers around the southern North Sea with fatal, sharp-edged mutilations have spurred controversy among scientists, the fishing industry and conservationists, whose views about the likely cause differ. The recent detection of grey seal (Halichoerus grypus) DNA in bite marks on three mutilated harbour porpoises, as well as direct observations of grey seal attacks on porpoises, have identified this seal species as a probable cause. Bite mark characteristics were assessed in a retrospective analysis of photographs of dead harbour porpoises that stranded between 2003 and 2013 (n = 1081) on the Dutch coastline. There were 271 animals that were sufficiently fresh to allow macroscopic assessment of grey seal-associated wounds with certainty. In 25% of these, bite and claw marks were identified that were consistent with the marks found on animals that had tested positive for grey seal DNA. Affected animals were mostly healthy juveniles that had a thick blubber layer and had recently fed. We conclude that the majority of the mutilated harbour porpoises were victims of grey seal attacks and that predation by this species is one of the main causes of death in harbour porpoises in The Netherlands. We provide a decision tree that will help in the identification of future cases of grey seal predation on porpoises.
Veterinary Pathology | 2013
Lineke Begeman; J. A. St. Leger; D. J. Blyde; Thierry Jauniaux; Stéphane Lair; G. Lovewell; Stephen Raverty; H. Seibel; Ursula Siebert; S. L. Staggs; P. Martelli; R.I. Keesler
Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition.
The Journal of Comparative Neurology | 2015
Maria Morell; Marc Lenoir; Robert E. Shadwick; Thierry Jauniaux; Willy Dabin; Lineke Begeman; Marisa Ferreira; Iranzu Maestre; Eduard Degollada; Gema Hernandez-Milian; Chantal Cazevieille; José-Manuel Fortuño; Wayne Vogl; Jean-Luc Puel; Michel André
The morphological study of the Odontocete organ of Corti, together with possible alterations associated with damage from sound exposure, represents a key conservation approach to assess the effects of acoustic pollution on marine ecosystems. By collaborating with stranding networks from several European countries, 150 ears from 13 species of Odontocetes were collected and analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Based on our analyses, we first describe and compare Odontocete cochlear structures and then propose a diagnostic method to identify inner ear alterations in stranded individuals. The two species analyzed by TEM (Phocoena phocoena and Stenella coeruleoalba) showed morphological characteristics in the lower basal turn of high‐frequency hearing species. Among other striking features, outer hair cell bodies were extremely small and were strongly attached to Deiters cells. Such morphological characteristics, shared with horseshoe bats, suggest that there has been convergent evolution of sound reception mechanisms among echolocating species. Despite possible autolytic artifacts due to technical and experimental constraints, the SEM analysis allowed us to detect the presence of scarring processes resulting from the disappearance of outer hair cells from the epithelium. In addition, in contrast to the rapid decomposition process of the sensory epithelium after death (especially of the inner hair cells), the tectorial membrane appeared to be more resistant to postmortem autolysis effects. Analysis of the stereocilia imprint pattern at the undersurface of the tectorial membrane may provide a way to detect possible ultrastructural alterations of the hair cell stereocilia by mirroring them on the tectorial membrane. J. Comp. Neurol. 523:431–448, 2015.
Diseases of Aquatic Organisms | 2015
Steven J. van Beurden; Lonneke L. IJsseldijk; Herman J. W. M. Cremers; Andrea Gröne; M. Hélène Verheije; Lineke Begeman
Cetaceans are well known definitive hosts of parasitic nematodes of the genus Anisakis (Nematoda: Anisakidae). Anisakid nematodes are also a health hazard for humans, potentially causing gastrointestinal infections or allergic reactions following the consumption of infected fish. In marine mammals, the nematodes develop from third-stage larvae to adults in the stomachs. In the first (or fore-) stomach, these parasites are typically associated with mucosal ulceration; parasites have not been identified in other organs. Two small cetaceans, a bottlenose dolphin Tursiops truncatus and a harbour porpoise Phocoena phocoena, presented marked gastric A. simplex infection, as well as chronic granulomatous and ulcerative dermatitis with intralesional nematodes, bordered by epithelial hyperplasia. Nematodes in the skin of the bottlenose dolphin were morphologically similar to Anisakis spp. Morphology of the parasitic remnants in the skin lesion of the harbour porpoise was indistinct, but molecular identification confirmed the presence of A. simplex. This is the first report of Anisakis spp. infection in the skin of marine mammals.
Veterinary Microbiology | 2014
Elisa Maio; Lineke Begeman; Yvette J. W. M. Bisselink; Peter van Tulden; Lidewij Wiersma; Sjoukje Hiemstra; Robin Ruuls; Andrea Gröne; Hendrik-Ido-Jan Roest; Peter Willemsen; Joke van der Giessen
The presence of Brucella (B.) spp. in harbour porpoises stranded between 2008 and 2011 along the Dutch coast was studied. A selection of 265 tissue samples from 112 animals was analysed using conventional and molecular methods. In total, 4.5% (5/112) of the animals corresponding with 2.3% (6/265) Brucella positive tissue samples were Brucella positive by culture and these were all confirmed by real-time polymerase chain reaction (real-time PCR) based on the insertion element 711 (IS711). In addition, two more Brucella-positive tissue samples from two animals collected in 2011 were identified using real-time PCR resulting in an overall Brucella prevalence of 6.3% (7/112 animals). Brucella spp. were obtained from lungs (n=3), pulmonary lymph node (n=3) and lungworms (n=2). Multi Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) typing based on the MLVA-16 showed that the Brucella isolates were B. ceti. Additional in silico Multi Locus Sequence typing (MLST) after whole genome sequencing of the 6 Brucella isolates confirmed B. ceti ST 23. According to the Brucella 2010 MLVA database, the isolated Brucella strains encountered were of five genotypes, in two distinct subclusters divided in two different time periods of harbour porpoises collection. This study is the first population based analyses for Brucella spp. infections in cetaceans stranded along the Dutch coast.
The Journal of Infectious Diseases | 2018
Emmie de Wit; Jurre Y. Siegers; Jacqueline Cronin; Sarah Weatherman; Judith M. A. van den Brand; Lonneke M. Leijten; Peter van Run; Lineke Begeman; Henk-Jan van den Ham; Arno C. Andeweg; Trenton Bushmaker; Dana P. Scott; Greg Saturday; Vincent J. Munster; Heinz Feldmann; Debby van Riel
Background The 1918 Spanish H1N1 influenza pandemic was the most severe recorded influenza pandemic with an estimated 20-50 million deaths worldwide. Even though it is known that influenza viruses can cause extrarespiratory tract complications-which are often severe or even fatal-the potential contribution of extrarespiratory tissues to the pathogenesis of 1918 H1N1 virus infection has not been studied comprehensively. Methods Here, we performed a time-course study in ferrets inoculated intranasally with 1918 H1N1 influenza virus, with special emphasis on the involvement of extrarespiratory tissues. Respiratory and extrarespiratory tissues were collected after inoculation for virological, histological, and immunological analysis. Results Infectious virus was detected at high titers in respiratory tissues and, at lower titers in most extrarespiratory tissues. Evidence for active virus replication, as indicated by the detection of nucleoprotein by immunohistochemistry, was observed in the respiratory tract, peripheral and central nervous system, and liver. Proinflammatory cytokines were up-regulated in respiratory tissues, olfactory bulb, spinal cord, liver, heart, and pancreas. Conclusions 1918 H1N1 virus spread to and induced cytokine responses in tissues outside the respiratory tract, which likely contributed to the severity of infection. Moreover, our data support the suggested link between 1918 H1N1 infection and central nervous system disease.
Archives of Virology | 2017
Steven J. van Beurden; Lonneke L. IJsseldijk; Marco van de Bildt; Lineke Begeman; James F. X. Wellehan; Thomas B. Waltzek; Geert de Vrieze; Andrea Gröne; Thijs Kuiken; M. Hélène Verheije; Judit J. Penzes
Harbour porpoises (Phocoena phocoena) are the most prevalent cetaceans in the North Sea. The fecal viral flora of 21 harbour porpoises stranded along the Dutch coastline was analyzed by a metagenomics approach. Sequences of a novel cetacean mastadenovirus, designated harbour porpoise adenovirus 1 (HpAdV-1), were detected. The sequence of a 23-kbp genomic region, spanning the conserved late region, was determined using primer walking. Phylogenetic analysis indicated that HpAdV-1 is most closely related to bottlenose dolphin adenovirus and clusters with Cetartiodactyla adenoviruses. The prevalence of HpAdV-1 was low (2.6%) based on targeted PCR-screening of the intestinal contents of 151 harbour porpoises stranded between 2010 and 2013.
Lancet Infectious Diseases | 2017
Lineke Begeman; Corine H. GeurtsvanKessel; Stefan Finke; Conrad Martin Freuling; Marion Koopmans; Thomas Müller; Tom J. H. Ruigrok; Thijs Kuiken
Bat-acquired rabies is becoming increasingly common, and its diagnosis could be missed partly because its clinical presentation differs from that of dog-acquired rabies. We reviewed the scientific literature to compare the pathogenesis of rabies in bats and carnivores-including dogs-and related this pathogenesis to differences in the clinical presentation of bat-acquired and dog-acquired rabies in human beings. For bat-acquired rabies, we found that the histological site of exposure is usually limited to the skin, the anatomical site of exposure is more commonly the face, and the virus might be more adapted for entry via the skin than for dog-acquired rabies. These factors could help to explain several differences in clinical presentation between individuals with bat-acquired and those with dog-acquired rabies. A better understanding of these differences should improve the recording of a patients history, enable drawing up of a more sophisticated list of clinical characteristics, and therefore obtain an earlier diagnosis of rabies after contact with a bat or carnivore that has rabies.
PLOS Neglected Tropical Diseases | 2018
Richard Suu-Ire; Lineke Begeman; Ashley C. Banyard; Andrew C. Breed; Christian Drosten; Elisa Eggerbauer; Conrad Martin Freuling; Louise Gibson; Hooman Goharriz; Daniel L. Horton; Daisy Jennings; Ivan Kuzmin; Denise A. Marston; Yaa Ntiamoa-Baidu; Silke Riesle Sbarbaro; David Selden; Emma L. Wise; Thijs Kuiken; Anthony R. Fooks; Thomas Müller; J. L. N. Wood; Andrew A. Cunningham
Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.
Vaccine | 2018
Penelope Koraka; Byron E. E. Martina; Marcin Smreczak; Anna Orłowska; Anna Marzec; Paweł Trębas; Jouke M. Roose; Lineke Begeman; Ingo Gerhauser; Peter Wohlsein; Wolfgang Baumgärtner; Jan Zmudzinski; Albert D. M. E. Osterhaus
Rabies virus infects almost all mammals resulting in lethal disease. To date there is no treatment available for symptomatic rabies and there is an urgent need to develop treatment strategies that would prolong survival, thereby providing a window of opportunity for the host to mount a protective immune response. We hypothesized that both virus and excessive immune response contribute to disease and that interfering with both is necessary to prevent lethal disease. Here, we have inhibited the pro-inflammatory response associated with pyroptosis and showed that inhibition of CASP-1 had a beneficial effect on survival time. Our results confirm that some inflammatory responses may be involved in the pathogenesis of severe disease and the results suggest that effective intervention includes inhibition of virus and host response.