Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ling Geng is active.

Publication


Featured researches published by Ling Geng.


Cancer Research | 2006

Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells

Carolyn Cao; Ty K. Subhawong; Jeffrey M. Albert; Kwang Woon Kim; Ling Geng; Konjeti R. Sekhar; Young Jin Gi; Bo Lu

The phosphatidylinositol 3-kinase/Akt pathway plays a critical role in oncogenesis, and dysregulation of this pathway through loss of PTEN suppression is a particularly common phenomenon in aggressive prostate cancers. The mammalian target of rapamycin (mTOR) is a downstream signaling kinase in this pathway, exerting prosurvival influence on cells through the activation of factors involved in protein synthesis. The mTOR inhibitor rapamycin and its derivatives are cytotoxic to a number of cell lines. Recently, mTOR inhibition has also been shown to radiosensitize endothelial and breast cancer cells in vitro. Because radiation is an important modality in the treatment of prostate cancer, we tested the ability of the mTOR inhibitor RAD001 (everolimus) to enhance the cytotoxic effects of radiation on two prostate cancer cell lines, PC-3 and DU145. We found that both cell lines became more vulnerable to irradiation after treatment with RAD001, with the PTEN-deficient PC-3 cell line showing the greater sensitivity. This increased susceptibility to radiation is associated with induction of autophagy. Furthermore, we show that blocking apoptosis with caspase inhibition and Bax/Bak small interfering RNA in these cell lines enhances radiation-induced mortality and induces autophagy. Together, these data highlight the emerging importance of mTOR as a molecular target for therapeutic intervention, and lend support to the idea that nonapoptotic modes of cell death may play a crucial role in improving tumor cell kill.


Clinical Cancer Research | 2007

Inhibition of Poly(ADP-Ribose) Polymerase Enhances Cell Death and Improves Tumor Growth Delay in Irradiated Lung Cancer Models

Jeffrey M. Albert; Carolyn Cao; Kwang Woon Kim; Christopher D. Willey; Ling Geng; Dakai Xiao; Hong Wang; Alan Sandler; David H. Johnson; Alexander D. Colevas; Jennifer A. Low; Mace L. Rothenberg; Bo Lu

Purpose: Poly(ADP-ribose) polymerase-1 (PARP-1) is the founding member of a family of enzymes that catalyze the addition of ADP-ribose units to proteins that mediate DNA repair pathways. Ionizing radiation induces DNA strand breaks, suggesting that PARP-1 inhibition may sensitize tumor cells to radiation. Experimental Design: We investigated the combination of PARP-1 inhibition with radiation in lung cancer models. ABT-888, a novel potent PARP-1 inhibitor, was used to explore the effects of PARP-1 inhibition on irradiated tumors and tumor vasculature. Results: ABT-888 reduced clonogenic survival in H460 lung cancer cells, and inhibited DNA repair as shown by enhanced expression of DNA strand break marker histone γ-H2AX. Both apoptosis and autophagy contributed to the mechanism of increased cell death. Additionally, ABT-888 increased tumor growth delay at well-tolerated doses in murine models. For a 5-fold increase in tumor volume, tumor growth delay was 1 day for ABT-888 alone, 7 days for radiation alone, and 13.5 days for combination treatment. Immunohistochemical staining of tumor sections revealed an increase in terminal deoxyribonucleotide transferase–mediated nick-end labeling apoptotic staining, and a decrease in Ki-67 proliferative staining after combination treatment. Matrigel assay showed a decrease in in vitro endothelial tubule formation with ABT-888/radiation combination treatment, and von Willebrand factor staining of tumor sections revealed decreased vessel formation in vivo, suggesting that this strategy may also target tumor angiogenesis. Conclusions: We conclude that PARP-1 inhibition shows promise as an effective means of enhancing tumor sensitivity to radiation, and future clinical studies are needed to determine the potential of ABT-888 as a radiation enhancer.


Angiogenesis | 2004

The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels

K. Osusky; Dennis E. Hallahan; Allie Fu; Fei Ye; Yu Shyr; Ling Geng

Antiangiogenic agents produce regression in few tumors in clinical trials, but are effective in preventing recurrences. To determine whether the vascular endothelial growth factor (VEGF) receptor is a molecular target to prevent metastatic disease, we utilized a non-specific inhibitor of the VEGF receptor, SU11248. This receptor tyrosine kinase (RTK) inhibitor prevented migration of endothelial cells and markedly attenuated capillary-like tubule formation in endothelial cells in culture. Similarly, this agent prevented blood vessel formation in the tumor vascular window model. VEGF RTK inhibition produced minimal effects on established blood vessels in the tumor vascular window model and little effect on blood flow studied by power Doppler analysis. To determine whether these agents attenuate the development of metastases, Lewis lung carcinoma tumors were resected from the dorsal skin and lung metastases were quantified with and without treatment with SU11248. The RTK inhibitor attenuated the formation of lung metastases following resection of the hind limb tumor. In contrast, these agents did not induce regression of primaries but slowed the progression of tumor growth. These findings suggest that the greatest role for VEGF antagonists may be to prevent the formation of new blood vessels, during and after conventional therapy is given to existing neoplastic disease.


Cancer Cell | 2003

Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels

Dennis E. Hallahan; Ling Geng; Shimian Qu; Christopher Scarfone; Todd D. Giorgio; Edwin F. Donnelly; Xiang Gao; Jeff Clanton

The objective of this study was to target drug delivery to radiation-induced neoantigens, which include activated receptors within the tumor vasculature. These responses include posttranslational changes in pre-existing proteins, which can be discovered by phage-displayed peptide libraries administered to mice bearing irradiated tumors. Phage-displayed peptides recovered from irradiated tumors included the amino acid sequence RGDGSSV. This peptide binds to integrins within the tumor microvasculature. Immunohistochemical staining of irradiated tumors showed accumulation of fibrinogen receptor alpha(2b)beta(3) integrin. We studied tumor targeting efficiency of ligands to radiation-induced alpha(2b)beta(3). Radiopharmaceuticals were localized to irradiated tumors by use of alpha(2b)beta(3) ligands conjugated to nanoparticles and liposomes. Fibrinogen-conjugated nanoparticles bind to the radiation-activated receptor, obliterate tumor blood flow, and significantly increase regression and growth delay in irradiated tumors. Radiation-guided drug delivery to tumor blood vessels is a novel paradigm for targeted drug delivery.


Cancer Research | 2006

Histone Deacetylase (HDAC) Inhibitor LBH589 Increases Duration of γ-H2AX Foci and Confines HDAC4 to the Cytoplasm in Irradiated Non–Small Cell Lung Cancer

Ling Geng; Kyle C. Cuneo; Allie Fu; Tianxiang Tu; Peter Atadja; Dennis E. Hallahan

Histone deacetylases (HDAC) have been identified as therapeutic targets due to their regulatory function in DNA structure and organization. LBH589 is a novel inhibitor of class I and II HDACs. We studied the effect of LBH589 and ionizing radiation (IR) on DNA repair in two human non-small cell lung cancer (NSCLC) cell lines (H23 and H460). gamma-H2AX foci present at DNA double-strand breaks (DSBs) were detected in the nuclei following 3 Gy irradiation for up to 6 hours. LBH589 administered before irradiation increased the duration of gamma-H2AX foci beyond 24 hours. Furthermore, radiation alone induced translocation of HDAC4 to the nucleus. In contrast, treatment with LBH589 followed by irradiation resulted in HDAC4 confinement to the cytoplasm, indicating that HDAC inhibition affects the nuclear localization of HDAC4. The findings that LBH589 confines HDAC4 to the cytoplasm and increases the duration of gamma-H2AX foci in irradiated cell lines suggest that HDAC4 participates in DNA damage signaling following IR. Annexin-propidium iodide flow cytometry assays, cell morphology studies, and cleaved caspase-3 Western blot analysis revealed a synergistic effect of LBH589 with IR in inducing apoptosis. Clonogenic survival showed a greater than additive effect when LBH589 was administered before irradiation compared with irradiation alone. In vivo tumor volume studies showed a growth delay of 20 days with combined treatment compared with 4 and 2 days for radiation or LBH589 alone. This study identifies HDAC4 as a biomarker of LBH589 activity and recognizes the ability of LBH589 to sensitize human NSCLC to radiation-induced DNA DSBs.


Cancer Research | 2005

DNA-Dependent Protein Kinase Is a Molecular Target for the Development of Noncytotoxic Radiation–Sensitizing Drugs

Eric T. Shinohara; Ling Geng; J. Tan; Heidi Chen; Yu Shir; Eric Edwards; James Halbrook; Edward A. Kesicki; Adam Kashishian; Dennis E. Hallahan

DNA-dependent protein kinase (DNA-PK)-defective severe combined immunodeficient (SCID) mice have a greater sensitivity to ionizing radiation compared with wild-type mice due to deficient repair of DNA double-strand break. SCID cells were therefore studied to determine whether radiosensitization by the specific inhibitor of DNA-PK, IC87361, is eliminated in the absence of functional DNA-PK. IC87361 enhanced radiation sensitivity in wild-type C57BL6 endothelial cells but not in SCID cells. The tumor vascular window model was used to assess IC87361-induced radiosensitization of SCID and wild-type tumor microvasculature. Vascular density was 5% in irradiated SCID host compared with 50% in C57BL6 mice (P < 0.05). IC87361 induced radiosensitization of tumor microvasculature in wild-type mice that resembled the radiosensitive phenotype of tumor vessels in SCID mice. Radiosensitization by IC87361 was eliminated in SCID tumor vasculature, which lack functional DNA-PK. Irradiated LLC and B16F0 tumors implanted into SCID mice showed greater tumor growth delay compared with tumors implanted into either wild-type C57BL6 or nude mice. Furthermore, LLC tumors treated with radiation and IC87361 showed tumor growth delay that was significantly greater than tumors treated with radiation alone (P < 0.01 for 3 Gy alone versus 3 Gy + IC87361). DNA-PK inhibitors induced no cytotoxicity and no toxicity in mouse normal tissues. Mouse models deficient in enzyme activity are useful to assess the specificity of novel kinase inhibitors. DNA-PK is an important target for the development of novel radiation-sensitizing drugs that have little intrinsic cytotoxicity.


Molecular Cancer Therapeutics | 2006

Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2.

Carolyn Cao; Eric T. Shinohara; Ty K. Subhawong; Ling Geng; Kwang Woon Kim; Jeffrey M. Albert; Dennis E. Hallahan; Bo Lu

p53 plays a critical role in cell cycle arrest and induction of apoptosis. Certain malignancies carry wild-type p53, which is frequently down-regulated by murine double minute 2 (MDM2) overexpression. Availability of a small-molecule inhibitor against MDM2, nutlin, has made it feasible to evaluate the anti-MDM2-based therapeutic strategies. The rationale for the current study is that functional p53 has been linked with improved responses to radiation treatment. Hence, this study evaluates the use of nutlin, a small-molecule inhibitor that blocks the interaction of p53 and MDM2, in sensitizing cancer cells to radiation. Expression of MDM2, p53, and p21 in both p53 wild-type and p53-defective lung cancer cell lines was examined. Clonogenic and 7-amino-actinomycin D studies were used to determine possible mechanisms of cell death. The combined effect of MDM2 inhibition and radiation on cell cycle was also studied. We found that radiosensitization by nutlin occurs in lung cancer cells with wild-type p53. There were increased apoptosis and cell cycle arrest following administration of nutlin and radiation. Furthermore, the combination of nutlin and radiation decreased the ability of endothelial cells to form vasculature, as shown by Matrigel assays. Our data suggest that nutlin is an effective radiosensitizer of p53 wild-type cells. The radiosensitizing effect seems to be at least partially due to induction of apoptosis and cell cycle arrest. In addition, nutlin may be an effective radiosensitizer of tumor vasculature. [Mol Cancer Ther 2006;5(2):411–7]


Cancer Research | 2004

A Specific Antagonist of the p110δ Catalytic Component of Phosphatidylinositol 3′-Kinase, IC486068, Enhances Radiation-Induced Tumor Vascular Destruction

Ling Geng; Jiahuai Tan; Eric Himmelfarb; Schueneman Aj; Ken Niermann; Allie Fu; Kyle C. Cuneo; Edward A. Kesicki; Jennifer Treiberg; Joel S. Hayflick; Dennis E. Hallahan

The phosphatidylinositol 3′-kinase (PI3k)/protein kinase B (PKB/Akt) signal transduction pathway plays a critical role in mediating endothelial cell survival and function during oxidative stress. The role of the PI3k/Akt signaling pathway in promoting cell viability was studied in vascular endothelial cells treated with ionizing radiation. Western blot analysis showed that Akt was rapidly phosphorylated in response to radiation in primary culture endothelial cells (human umbilical vascular endothelial cells) in the absence of serum or growth factors. PI3k consists of p85 and p110 subunits, which play a central upstream role in Akt activation in response to exogenous stimuli. The δ isoform of the p110 subunit is expressed in endothelial cells. We studied the effects of the p110δ specific inhibitor IC486068, which abrogated radiation-induced phosphorylation of Akt. IC486068 enhanced radiation-induced apoptosis in endothelial cells and reduced cell migration and tubule formation of endothelial cells in Matrigel following irradiation. In vivo tumor growth delay was studied in mice with Lewis lung carcinoma and GL261 hind limb tumors. Mice were treated with daily i.p. injections (25 mg/kg) of IC486068 during 6 days of radiation treatment (18 Gy). Combined treatment with IC486068 and radiation significantly reduced tumor volume as compared with either treatment alone. Reduction in vasculature was confirmed using the dorsal skinfold vascular window model. The vascular length density was measured by use of the tumor vascular window model and showed IC486068 significantly enhanced radiation-induced destruction of tumor vasculature as compared with either treatment alone. IC486068 enhances radiation-induced endothelial cytotoxicity, resulting in tumor vascular destruction and tumor control when combined with fractionated radiotherapy in murine tumor models. These findings suggest that p110δ is a therapeutic target to enhance radiation-induced tumor control.


Journal of Controlled Release | 2001

Targeting drug delivery to radiation-induced neoantigens in tumor microvasculature.

Dennis E. Hallahan; Ling Geng; Anthony J. Cmelak; A.B. Chakravarthy; William H. Martin; Christopher Scarfone; A. Gonzalez

Radiation can be used to guide drugs to specific sites such as neoplasms or aberrant blood vessels. When blood vessels are treated with ionizing radiation, they respond by expressing a number of cell adhesion molecules and receptors that participate in homeostasis. Examples of radiation-induced molecules in blood vessels include ICAM-1, E-selectin, P-selectin and the beta(3) integrin. We have observed that the endothelium and blood components respond to oxidative stress in a similar, if not identical manner in all tumor models. Although we have identified several other radiation-induced molecules within tumor blood vessels, the beta(3) target for drug delivery achieves the greatest site-specific peptide binding within irradiated tumor blood vessels. We have focused on peptides and antibodies that bind to integrin beta(3). beta(3)-binding proteins have been conjugated to fluorochromes and radionuclides to study the site specificity and microscopic distribution. We have found immunofluorescent and immunohistochemical staining of beta(3) within the lumen of blood vessels immediately following irradiation. To determine whether it is feasible to guide drug delivery to irradiated tumors, we studied ligands to alpha(2b)beta(3) (fibrinogen). Peptides within fibrinogen that bind to alpha(2b)beta(3) includes the dodecapeptide, HHLGGAKQAGDV and the RGD peptide. We utilized 131I conjugation to these ligands to study the biodistribution in tumor bearing mice. Our clinical trial consists of the RGD peptidomimetic, biapcitide, labeled with 99mTc. This study shows that it is feasible to guide drugs to human neoplasms by use of radiation-guided peptides. These studies have shown that peptides that bind to these integrins bind to tumors following exposure to ionizing radiation.


Nature Medicine | 2008

Noninvasive assessment of cancer response to therapy

Zhaozhong Han; Allie Fu; Hailun Wang; Roberto Diaz; Ling Geng; Halina Onishko; Dennis E. Hallahan

Rapid assessment of cancer response to a therapeutic regimen can determine efficacy early in the course of treatment. Although biopsies of cancer can be used to rapidly assess pharmacodynamic response, certain disease sites are less accessible to repeated biopsies. Here, we simultaneously assess response in all sites of disease within days of starting therapy by use of peptide ligands selected for their ability to discern responding from nonresponding cancers. When conjugated to near-infrared imaging agents, the HVGGSSV peptide differentiates between these two types of cancer. Rapid, noninvasive assessment of the pharmacodynamic response within cancer promises to accelerate drug development and minimize the duration of treatment with ineffective regimens in cancer patients.

Collaboration


Dive into the Ling Geng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allie Fu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin F. Donnelly

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

K. Osusky

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Tan

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Bo Lu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge