Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ling Zhang is active.

Publication


Featured researches published by Ling Zhang.


Viruses | 2018

Oral Vaccination with a DNA Vaccine Encoding Capsid Protein of Duck Tembusu Virus Induces Protection Immunity

Juan Huang; Haoyue Shen; Renyong Jia; Mingshu Wang; Shun Chen; Dekang Zhu; Mafeng Liu; Xinxin Zhao; Qiao Yang; Ying Wu; Yunya Liu; Ling Zhang; Zhongqiong Yin; Bo Jing; Anchun Cheng

The emergence of duck tembusu virus (DTMUV), a new member of the Flavivirus genus, has caused great economical loss in the poultry industry in China. Since the outbreak and spread of DTMUV is hard to control in a clinical setting, an efficient and low-cost oral delivery DNA vaccine SL7207 (pVAX1-C) based on the capsid protein of DTMUV was developed and evaluated in this study. The antigen capsid protein was expressed from the DNA vaccine SL7207 (pVAX1-C), both in vitro and in vivo. The humoral and cellular immune responses in vivo were observed after oral immunization with the SL7207 (pVAX1-C) DNA vaccine. High titers of the specific antibody against the capsid protein and the neutralizing antibody against the DTMUV virus were both detected after inoculation. The ducks were efficiently protected from lethal DTMUV exposure by the SL7207 (pVAX1-C) vaccine in this experiment. Taken together, we demonstrated that the capsid protein of DTMUV possesses a strong immunogenicity against the DTMUV infection. Moreover, an oral delivery of the DNA vaccine SL7207 (pVAX1-C) utilizing Salmonella SL7207 was an efficient way to protect the ducks against DTMUV infection and provides an economic and fast vaccine delivery strategy for a large scale clinical use.


Scientific Reports | 2018

Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1

Jinyan Xie; Mingshu Wang; Anchun Cheng; Xinxin Zhao; Mafeng Liu; Dekang Zhu; Shun Chen; Renyong Jia; Qiao Yang; Ying Wu; Shaqiu Zhang; Yunya Liu; Yanling Yu; Ling Zhang; Kunfeng Sun; Xiaoyue Chen

Duck hepatitis A virus type 1 (DHAV-1) is one of the most harmful pathogens in the duck industry. The infection of adult ducks with DHAV-1 was previously shown to result in transient cytokine storms in their kidneys. To understand how DHAV-1 infection impacts the host liver, we conducted animal experiments with the virulent CH DHAV-1 strain and the attenuated CH60 commercial vaccine strain. Visual observation and standard hematoxylin and eosin staining were performed to detect pathological damage in the liver, and viral copy numbers and cytokine expression in the liver were evaluated by quantitative PCR. The CH strain (108.4 copies/mg) had higher viral titers than the CH60 strain (104.9 copies/mg) in the liver and caused ecchymotic hemorrhaging on the liver surface. Additionally, livers from ducklings inoculated with the CH strain were significantly infiltrated by numerous red blood cells, accompanied by severe cytokine storms, but similar signs were not observed in the livers of ducklings inoculated with the CH60 strain. In conclusion, the severe cytokine storm caused by the CH strain apparently induces hemorrhagic lesions in the liver, which might be a key factor in the rapid death of ducklings.


Viruses | 2018

Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism

Liyao Deng; Qiurui Zeng; Mingshu Wang; Anchun Cheng; Renyong Jia; Shun Chen; Dekang Zhu; Mafeng Liu; Qiao Yang; Ying Wu; Xinxin Zhao; Shaqiu Zhang; Yunya Liu; Yanling Yu; Ling Zhang; Xiaoyue Chen

Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.


Viruses | 2018

Conserved Active-Site Residues Associated with OAS Enzyme Activity and Ubiquitin-Like Domains Are Not Required for the Antiviral Activity of goOASL Protein against Avian Tembusu Virus

Shun Chen; Chao Yang; Jinyue Zhang; Zhen Wu; Mingshu Wang; Renyong Jia; Dekang Zhu; Mafeng Liu; Qiao Yang; Ying Wu; Xinxin Zhao; Shaqiu Zhang; Yunya Liu; Ling Zhang; Yanling Yu; Yu You; Anchun Cheng

Interferon (IFN)-induced 2′-5′-oligoadenylate synthetase (OAS) proteins exhibit an extensive and efficient antiviral effect against flavivirus infection in mammals and birds. Only the 2′-5′-oligoadenylate synthetase-like (OASL) gene has been identified thus far in birds, except for ostrich, which has both OAS1 and OASL genes. In this study, we first investigated the antiviral activity of goose OASL (goOASL) protein against a duck-origin Tembusu virus (DTMUV) in duck embryo fibroblast cells (DEFs). To investigate the relationship of conserved amino acids that are related to OAS enzyme activity and ubiquitin-like (UBL) domains with the antiviral activity of goOASL, a series of mutant goOASL plasmids was constructed, including goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T. Interestingly, all these mutant proteins significantly inhibited the replication of DTMUV in DEFs in a dose-dependent manner. Immunofluorescence analysis showed that the goOASL, goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T proteins were located not only in the cytoplasm where DTMUV replicates but also in the nucleus of DEFs. However, the goOASL and goOASL mutant proteins were mainly colocalized with DTMUV in the cytoplasm of infected cells. Our data indicated that goOASL could significantly inhibit DTMUV replication in vitro, while the active-site residues S64, D76, D78 and D144, which were associated with OAS enzyme activity, the UBL domains were not required for the antiviral activity of goOASL protein.


Veterinary Microbiology | 2018

Induction of a protective response in ducks vaccinated with a DNA vaccine encoding engineered duck circovirus Capsid protein

Juan Huang; Cui Yang; Renyong Jia; Mingshu Wang; Shun Chen; Mafeng Liu; Dekang Zhu; Xinxin Zhao; Qiao Yang; Ying Wu; Ling Zhang; Zhongqiong Yin; Bo Jing; Anchun Cheng

Duck circovirus (DuCV) is an immunosuppressive pathogen that causes a huge economic loss in the avian industry. Efficient vaccination has become a necessary strategy for preventing DuCV infection in the breeding industry. Three DNA vaccines encoding the Capsid (Cap) protein of DuCV were developed in this study, which were based on the eukaryotic vector pcDNA3.1 containing (i) the full length of Cap gene, pcDNA3.1-Cap, (ii) the Cap gene with a deletion of its nuclear localization signal (NLS) peptide encoding sequence, pcDNA3.1-CapΔNLS, and (iii) the Cap gene without NLS but harboring a fragment encoding the secretory signal peptide of tissue plasminogen activator (tPA), pcDNA3.1-tPA-CapΔNLS. Production of Cap protein-derived antigens from these three DNA vaccines was confirmed in vitro. The deletion of the NLS coding sequence of the Cap gene changed the subcellular location of the Capsid protein from the nucleus to the cytoplasm. Secretion of the Cap protein was observed in pcDNA3.1-tPA-CapΔNLS-transfected cells. The immunogenicity of these three DNA vaccines was assessed in vivo by measuring Cap-specific antibody and related cytokine levels. The results demonstrated that all these vaccines could induce a significant, specific immune response to protect ducks from DuCV challenge. Notably, higher titers of Cap-specific antibody were produced in ducks vaccinated with pcDNA3.1-tPA-CapΔNLS, which provided the highest protective efficacy at a rate of 90% in the challenge experiment. Taken together, DNA vaccines expressing the DuCV Cap protein show promising immunogenicity, which can be enhanced by replacing the NLS of the Cap protein with a secretory signal peptide of tPA.


Vaccine | 2018

Regulated delayed attenuation enhances the immunogenicity and protection provided by recombinant Salmonella enterica serovar Typhimurium vaccines expressing serovar Choleraesuis O-polysaccharides

Xinxin Zhao; Sheng Liang; Qinlong Dai; Renyong Jia; Dekang Zhu; Mafeng Liu; Mingshu Wang; Shun Chen; Qiao Yang; Ying Wu; Shaqiu Zhang; Ling Zhang; Yunya Liu; Yanling Yu; Anchun Cheng

Regulated delayed attenuation is a well-studied strategy for retaining the immunogenicity of Salmonella-vectored vaccines. In this study, this strategy was used to optimize two previously constructed recombinant Salmonella enterica serovar Typhimurium vaccines expressing S. Choleraesuis O-polysaccharides (OPS). The novel vaccine strains SLT31 (Δasd ΔrmlB-rfbP ΔPcrp::T araC PBAD) and SLT33 (Δasd ΔrfbP ΔpagL::T araC PBADrfbP ΔPcrp::T araC PBAD) were constructed by replacement of the native crp promoter with the arabinose-dependent araC PBAD promoter. As controls, two vaccine strains with direct crp mutations were also constructed, namely, SLT30 (Δasd ΔrmlB-rfbP Δcrp) and SLT32 (Δasd ΔrfbP ΔpagL::T araC PBADrfbP Δcrp). Then, the ability to deliver the heterologous S. Choleraesuis OPS on the Asd+ plasmid pCZ1 to the mouse immune system was evaluated in the strains with or without regulated delayed attenuation. The SLT30 (pCZ1) and SLT31 (pCZ1) strains expressed only the heterologous OPS, while the SLT32 (pCZ1) and SLT33 (pCZ1) strains co-expressed the homologous and heterologous OPS. The strain SLT31 (pCZ1) or SLT33 (pCZ1), which exhibited regulated delayed attenuation, colonized mouse tissues significantly better and stimulated stronger antibody responses against S. Choleraesuis LPS post immunization than the SLT30 (pCZ1) or SLT32 (pCZ1) strain. Immunization with SLT31 (pCZ1) or SLT33 (pCZ1) resulted in a significant reduction in bacterial loads in mouse tissues and a greater degree of protection against a lethal S. Choleraesuis dose compared with the effects observed after SLT30 (pCZ1) or SLT32 (pCZ1) immunization (100% vs. 80% or 70% vs. 50%, respectively). In addition, all four vaccines conferred complete protection against S. Typhimurium challenge. Overall, our study demonstrates that regulated delayed attenuation via an araC PBAD-regulated crp gene can enhance the cross-protection by Salmonella-vectored vaccines expressing heterologous OPS, and strain SLT31 (pCZ1) is a good candidate vaccine for preventing both S. Typhimurium and S. Choleraesuis infections.


Scientific Reports | 2018

Duck plague virus Glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread

Yu You; Tian Liu; Mingshu Wang; Anchun Cheng; Renyong Jia; Qiao Yang; Ying Wu; Dekang Zhu; Shun Chen; Mafeng Liu; Xinxin Zhao; Shaqiu Zhang; Yunya Liu; Yanling Yu; Ling Zhang

To analyse the function of the duck plague virus (DPV) glycoprotein J homologue (gJ), two different mutated viruses, a gJ deleted mutant ΔgJ and a gJR rescue mutant gJR with US5 restored were generated. All recombinant viruses were constructed by using two-step of RED recombination system implemented on the duck plague virus Chinese virulent strain (DPV CHv) genome cloned into a bacterial artificial chromosome. DPV-mutants were characterized on non-complementing DEF cells compared with parental virus. Viral replication kinetics of intracellular and extracellular viruses revealed that the ΔgJ virus produce a 10-fold reduction of viral titers than the gJR and parental virus, which especially the production of extracellular infectivity was affected. In addition, the ΔgJ virus produced viral plaques on DEF cells that was on average approximately 11% smaller than those produced by the gJR and parental viruses. Electron microscopy confirmed that although DPV CHv without gJ could efficiently carry out viral replication, virion assembly and envelopment within infected cells, the ΔgJ virus produced and accumulated high levels of anuclear particles in the nuclear and cytoplasm. These results show that the gJ slightly impaired in viral replication, virion assembly and cell-to-cell spread, and is not essential in virion envelopment.


Scientific Reports | 2018

Author Correction: Duck plague virus Glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread

Yu You; Tian Liu; Mingshu Wang; Anchun Cheng; Renyong Jia; Qiao Yang; Ying Wu; Dekang Zhu; Shun Chen; Mafeng Liu; Xinxin Zhao; Shaqiu Zhang; Yunya Liu; Yanling Yu; Ling Zhang

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.


Infection, Genetics and Evolution | 2018

Analysis of the microRNA expression profiles in DEF cells infected with duck Tembusu virus

Min Cui; Renyong Jia; Juan Huang; Xianglong Wu; Zhiqiang Hu; Xingcui Zhang; Mingshu Wang; Dekang Zhu; Shun Chen; Mafeng Liu; Xinxin Zhao; Yin Wu; Qiao Yang; Shaqiu Zhang; Yunya Liu; Ling Zhang; Zhongqiong Yin; Bo Jing; Anchun Cheng

Duck Tembusu virus (DTMUV), belonging to the Flaviviridae family, is a single-stranded positive-sense RNA virus. Since April 2010, the outbreak of DTMUV in southeast provinces of China has caused great economic losses. MicroRNAs (miRNAs) play important regulatory roles in viral infection through binding to the host target genes or the viral genomes. To better understanding the molecular mechanisms of virus-host interaction, here we identified the miRNA expression profiles in DTMUV-infected and uninfected DEF cells by high-throughput sequencing. A total of 287 known and 63 novel miRNAs were identified. 48 miRNAs, including 26 known miRNAs and 22 novel miRNAs, were differentially expressed in response to DTMUV infection. Among these miRNAs, 37 miRNAs were up-regulated and 11 miRNAs were down-regulated. 9 miRNAs were randomly selected for validation by qRT-PCR experiment. The results of qRT-PCR experiment were consistent with the sequencing data. GO enrichment showed that the predicted targets of these differentially expressed miRNAs were mainly involved in the regulation of immune system, cellular process and metabolic process. KEGG pathways analysis showed that predicted target genes were involved in several signaling pathways such as Wnt signaling pathway, TGF-beta signaling pathway, mTOR signaling pathway and FoxO signaling pathway. This is the first study to evaluate changes of miRNA expression in DEF cells upon DTMUV infection. Our findings provide important clues for better understanding the DTMUV-host interaction.


Frontiers in Immunology | 2018

Transcriptomic Characterization of a Chicken Embryo Model Infected With Duck Hepatitis A Virus Type 1

Jinyan Xie; Qiurui Zeng; Mingshu Wang; Xumin Ou; Yunchao Ma; Anchun Cheng; Xinxin Zhao; Mafeng Liu; Dekang Zhu; Shun Chen; Renyong Jia; Qiao Yang; Ying Wu; Shaqiu Zhang; Yunya Liu; Yanling Yu; Ling Zhang; Xiaoyue Chen

Duck hepatitis A virus type 1 (DHAV-1) is one of the most common and lethal pathogens in young ducklings. Live-attenuated DHAV vaccine (CH60 strain) developed by passaging in chicken embryos provided effective immune protection for ducklings. However, the accurate mechanism for such adaption in chicken embryos is not fully revealed. Here, we utilize RNA-sequencing to perform global transcriptional analysis of DHAV-1-innoculated embryonated livers along with histopathological and ultrastructural analysis. This study revealed that infection with DHAV-1 strain CH60 is associated with enhanced type I and II interferon responses, activated innate immune responses, elevated levels of suppressor of cytokine signaling 1 and 3 (SOCS1 and SOCS3) accompanied with abnormalities in multiple metabolic pathways. Excessive inflammatory and innate immune responses induced by the CH60 strain are related to severe liver damage. Our study presents a comprehensive characterization of the transcriptome of chicken embryos infected with DHAV-CH60 and provides insight for in-depth exploration of viral adaption and virus–host interactions.

Collaboration


Dive into the Ling Zhang's collaboration.

Top Co-Authors

Avatar

Anchun Cheng

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dekang Zhu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mafeng Liu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mingshu Wang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qiao Yang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Renyong Jia

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shun Chen

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinxin Zhao

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ying Wu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunya Liu

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge