Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingdong Kong is active.

Publication


Featured researches published by Lingdong Kong.


Chemical Communications | 2008

Mesoporous bismuth titanate with visible-light photocatalytic activity

Lingdong Kong; Haihan Chen; Weiming Hua; Shicheng Zhang; Jianmin Chen

Visible-light-driven mesoporous bismuth titanate photocatalyst, which possesses wormlike channels, mixed phase mesostructured frameworks, large pore diameter (approximately 6.1 nm), and low band gap energy (2.5 eV), has been successfully prepared via a modified evaporation-induced self-assembly technique (EISA).


Science of The Total Environment | 2015

Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere

Yunjie Hu; Jun Lin; Suanqin Zhang; Lingdong Kong; Hongbo Fu; Jianmin Chen

For a better understanding of metal particle morphology and behaviors in China, atmospheric aerosols were sampled in the summer of 2012 in Beijing. The single-particle analysis shows various metal-bearing speciations, dominated by oxides, sulfates and nitrates. A large fraction of particles is soluble. Sources of Fe-bearing particles are mainly steel industries and oil fuel combustion, whereas Zn- and Pb-bearing particles are primarily contributed by waste incineration, besides industrial combustion. Other trace metal particles play a minor rule, and may come from diverse origins. Mineral dust and anthropogenic source like vehicles and construction activities are of less importance to metal-rich particles. Statistics of 1173 analyzed particles show that Fe-rich particles (48.5%) dominate the metal particles, followed by Zn-rich particles (34.9%) and Pb-rich particles (15.6%). Compared with the abundances among clear, haze and fog conditions, a severe metal pollution is identified in haze and fog episodes. Particle composition and elemental correlation suggest that the haze episodes are affected by the biomass burning in the southern regions, and the fog episodes by the local emission with manifold particle speciation. Our results show the heterogeneous reaction accelerated in the fog and haze episodes indicated by more zinc nitrate or zinc sulfate instead of zinc oxide or carbonate. Such information is useful in improving our knowledge of fine airborne metal particles on their morphology, speciation, and solubility, all of which will help the government introduce certain control to alleviate metal pollution.


Journal of Physical Chemistry A | 2015

Interactions between Heterogeneous Uptake and Adsorption of Sulfur Dioxide and Acetaldehyde on Hematite

Xi Zhao; Lingdong Kong; Zhenyu Sun; Xiaoxiao Ding; Tiantao Cheng; Xin Yang; Jianmin Chen

Sulfur dioxide and organic aldehydes in the atmosphere are ubiquitous and often correlated with mineral dust aerosols. Heterogeneous uptake and adsorption of one of these species on mineral aerosols can potentially change the properties of the particles and further affect the subsequent heterogeneous reactions of the other species on the coating particles. In this study, the interactions between heterogeneous uptake and adsorption of sulfur dioxide and acetaldehyde on hematite are investigated by using in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS) at room temperature. It is found that the preadsorption of SO2 on α-Fe2O3 can significantly hinder the subsequent heterogeneous oxidation of CH3CHO to acetate, while the preadsorption of CH3CHO significantly suppresses the heterogeneous reaction of large amounts of SO2 on the surface of α-Fe2O3 and has a little influence on the uptake of small amount of SO2. The heterogeneous reactions of SO2 on α-Fe2O3 preadsorbed by CH3CHO change the existing acetate on the particle surface into chemisorbed acetic acid, for the enhancement of surface acidity after the uptake of SO2. During these processes, different surface hydroxyl groups showed different reactivities. Atmospheric implications of this study are discussed.


Journal of Environmental Sciences-china | 2015

Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau.

Bu Duo; Yunchen Zhang; Lingdong Kong; Hongbo Fu; Yunjie Hu; Jianmin Chen; Lin Li; A. Qiong

To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean concentrations of both PM2.5 and PM10 during the sampling were 25.7±21.7 and 57.2±46.7 μg/m3, respectively, much lower than those of other cities in East and South Asia, but higher than those in the remote region in TP like Nam Co, indicating minor urban pollution. Combining the observations with the meteorological parameters and back trajectory analysis, it was concluded that local sources controlled the pollution during the sampling. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectra (EDS) was used to study 408 particles sampled on four days. Based on the EDS analysis, a total of 8 different particle categories were classified for all 408 particles, including Si-rich, Ca-rich, soot, K-rich, Fe-rich, Pb-rich, Al-rich and other particles. The dominant elements were Si, Al and Ca, which were mainly attributed to mineral dust in the earths crust such as feldspar and clay. Fe-, Pb-, K-, Al-rich particles and soot mainly originated from anthropogenic sources like firework combustion and biomass burning during the sampling. During the sampling, the pollution mainly came from mineral dust, while the celebration ceremony and religious ritual produced a large quantity of anthropogenic metal-bearing particles on 9 and 25 February 2013. Cement particles also had a minor influence. The data obtained in this study can be useful for developing pollution control strategies.


Science of The Total Environment | 2017

Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai

Xiaoxiao Ding; Lingdong Kong; Chengtian Du; Assiya Zhanzakova; Lin Wang; Hongbo Fu; Jianmin Chen; Xin Yang; Tiantao Cheng

In this study, the concentrations of water soluble ions (WSI), organic carbon (OC), and elemental carbon (EC) of size-resolved (0.056-18μm) atmospheric aerosols were measured in July and August 2015 in Shanghai, China. Backward trajectory model and potential source contribution function (PSCF) model were used to identify the potential source distributions of size-resolved particles and PM1.8-associated atmospheric inorganic and carbonaceous aerosols. The results showed that the average mass concentrations of PM0.1, PM1, and PM1.8 were 21.21, 82.90, and 100.1μgm-3 in July and 7.00, 29.21, and 35.10μgm-3 in August, respectively, indicating that the particulate matter pollution was more serious in July than in August in this study due to the strong dependence of the aerosol species on the air mass origins. The trajectory cluster analysis revealed that the air masses originated from heavily industrialized areas including the Pearl River Delta (PRD) region, the Yangtze River Delta (YRD) region and the Beijing-Tianjin region were characterised with high OC and SO42- loadings. The results of PSCF showed that the pollution in July was mainly influenced by long-range transport while it was mainly associated to local and intra-regional transport in August. Besides the contributions of anthropogenic sources from YRD and PRD region, ship emissions from the East China Sea also made a great contribution to the high loadings of PM1.8 and PM1.8-associated NO3-, NH4+, and EC in July. SO42- in Shanghai was dominantly ascribed to anthropogenic sources and the high PSCF values for PM1.8-associated SO42- observed in August was mainly due to the ship emissions of Shanghai port, such as Wusong port and Yangshan deep-water port. These results indicated that the particulate pollutants from long-range transported air masses and shipping made a significant contribution to Shanghais air pollution.


Journal of Physical Chemistry A | 2015

Effect of Formaldehyde on the Heterogeneous Reaction of Nitrogen Dioxide on γ-Alumina

Zhenyu Sun; Lingdong Kong; Xi Zhao; Xiaoxiao Ding; Hongbo Fu; Tiantao Cheng; Xin Yang; Jianmin Chen

Heterogeneous reactions of NO2 on various mineral aerosol particles have been investigated in many previous studies, but a fundamental understanding of how the adsorption of formaldehyde influences the heterogeneous reactions of NO2 remains unclear. In this work, the effect of formaldehyde preadsorption on heterogeneous reaction of NO2 on the surface of γ-Al2O3 at 298 K and ambient pressure was investigated by using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS). It was found that the preadsorption of HCHO on γ-Al2O3 could suppress the formation of nitrate, and the rate of nitrate formation decreased with increasing amount of preadsorbed HCHO, whereas the following heterogeneous uptake of NO2 could suppress the hydration reaction of HCHO and promote the production of HCOO(-) during the reaction. Surface nitrite was formed and identified to be an intermediate product and gradually disappeared as the reaction proceeded. The amount of the formed nitrite decreased when the amount of HCHO increased. Uptake coefficients of heterogeneous reactions were calculated and found to be sensitive to the adsorption of HCHO. A possible mechanism for the influence of HCHO adsorption on the heterogeneous conversion of NO2 on γ-Al2O3 was proposed, and atmospheric implications based on these results were discussed.


Science of The Total Environment | 2018

Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study

Lingdong Kong; Chengtian Du; Assiya Zhanzakova; Tiantao Cheng; Xin Yang; Lin Wang; Hongbo Fu; Jianmin Chen; Shicheng Zhang

Heterogeneous aqueous reaction plays important roles in the enhanced formation of secondary aerosols during haze. However, its occurrence in haze episodes remains poorly understood. In this study, the trends in heterogeneous aqueous reaction in continuous haze episodes were investigated by an in-depth case analysis. The highly time-resolved measurements of water-soluble inorganic ions of PM2.5 were conducted in a suburban of Shanghai, China, and continuous haze episodes, which occurred from Feb. 18 to Feb. 28, were selected as studied cases. Results showed that fine particle pollution in Baoshan was serious. High concentrations of secondary inorganic aerosol ions and the higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) on haze days indicated enhanced conversions from SO2 and NOx to their corresponding particulate phases. The high-nitrate haze episode and the high-sulfate haze episode were identified. Further simulations revealed that the PM2.5 particles had strong acidity during the high-nitrate and high-sulfate haze episodes whether they were calculated by E-AIM 4 or by ISORROPIA II. It was found that particulate liquid water was more sensitive to nitrate than sulfate, and played significant roles in the heterogeneous aqueous reactions of NO2 and secondary nitrate formation during haze episodes, especially in the high-sulfate haze episode. Further analysis indicated that the high-nitrate haze episode favoured the occurrence of heterogeneous aqueous phase oxidation of SO2, and the more water was in the particles, the more SO2 was converted to sulfate aerosols. This work provides an important field measurement-based evidence for understanding the important contributions of the heterogeneous aqueous reactions to secondary aerosol pollution and the tendencies of heterogeneous aqueous reactions in the formation of secondary sulfate and nitrate aerosols in suburban Shanghai.


Science of The Total Environment | 2017

Comparison of aerosol and cloud condensation nuclei between wet and dry seasons in Guangzhou, southern China

Junyan Duan; Jun Tao; Yunfei Wu; Tiantao Cheng; Renjian Zhang; Yanyu Wang; Hailin Zhu; Xin Xie; Yuehui Liu; Xiang Li; Lingdong Kong; Mei Li; Qianshan He

Cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol chemical composition were measured simultaneously at an urban site of Guangzhou from July to August 2015 and in January 2016, and the seasonal variations of aerosol activated fractions (NCCN/NCN) as well as their relevant influence factors were further studied accordingly. NCN is generally higher in winter (dry season), whereas NCCN and NCCN/NCN are mostly higher in summer (wet season) instead. In particular, NCCN and NCCN/NCN are much lower at smaller supersaturation levels (SS<0.2) in winter. In spite of similar diurnal variations for NCCN and NCN, NCCN/NCN indicates an opposite tendency, relatively lower at midday, dusk and before midnight. Other than the size of particles as well as their chemical composition, some other factors, such as mass, gas precursors, pollutant transportation, meteorological conditions, etc., also contribute to the variations of NCCN and NCCN/NCN. Particles from the local source or local-oceanic combination source cast influence on CN and CCN significantly, while the pollutants originating from and crossing over distant polluted areas contribute largely to CCN/CN. NCN and NCCN are relatively higher under pollution-free conditions in summertime and polluted conditions in wintertime, but NCCN/NCN is just the opposite. On various polluted conditions, aerosol CCN activities are greatly discrepant between summer and winter, especially during mist or heavy haze periods. The results imply that anthropogenic pollutants exert critical impacts on aerosol CCN activation.


Journal of Geophysical Research | 2014

Observations of linear dependence between sulfate and nitrate in atmospheric particles: DEPENDENCE BETWEEN SULFATE AND NITRATE

Lingdong Kong; Yiwei Yang; Shuanqin Zhang; Xi Zhao; Huanhuan Du; Hongbo Fu; Shicheng Zhang; Tiantao Cheng; Xin Yang; Jianmin Chen; Dui Wu; Jiandong Shen; Shengmao Hong; Li Jiao

Hourly measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009–2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.


Science of The Total Environment | 2019

Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors

Rui Li; Zhenzhen Wang; Lulu Cui; Hongbo Fu; Liwu Zhang; Lingdong Kong; Weidong Chen; Jianmin Chen

With rapid economic development and urbanization, China has suffered from severe and persistent air pollution during the past years. In the work, the hourly data of PM2.5, PM10, SO2, NO2, CO, and O3 in all of the prefecture-level cities (336 cities) during 2015-2016 were collected to uncover the spatiotemporal variations and influential factors of these pollutants in China. The average concentrations of PM2.5, PM10, SO2, NO2, and CO decreased by 19.32%, 15.34%, 29.30%, 9.39%, and 8.00% from 2015 to 2016, suggesting the effects of efficient control measurements during this period. On the contrary, the O3 concentration increased by 4.20% during the same period, which mainly owed to high volatile organic compounds (VOCs) loading. The concentrations of PM2.5, PM10, SO2, CO and NO2 showed the highest and the lowest ones in winter and summer, respectively. However, the O3 concentration peaked in summer, followed by ones in spring and autumn, and presented the lowest one in winter. All of the pollutants exhibited significantly weekly and diurnal cycle in China. PM2.5, PM10, SO2, CO and NO2 presented the higher concentrations on weekdays than those at weekends, all of which showed the bimodal pattern with two peaks at late night (21:00-22:00) and in morning (9:00-10:00), respectively. However, the O3 concentration exhibited the highest value around 15:00. The statistical analysis suggested that the PM2.5, PM10, and SO2 concentrations were significantly associated with precipitation (Prec), atmosphere temperature (T), and wind speed (WS). The CO and NO2 concentrations displayed the significant relationship with T, while the O3 concentration was closely linked to the sunshine duration (Tsun) and relative humidity (RH). T and WS were major factors affecting the accumulation of PM and gaseous pollutants at a national scale. At a spatial scale, Prec and T played the important roles on the PM distribution in Northeast China, and the effect of Prec on CO concentration decreased from Southeast China to Northwest China. The results shown herein provide a scientific insight into the meteorology impacts on air pollution over China.

Collaboration


Dive into the Lingdong Kong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge