Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingegowda S. Mangala is active.

Publication


Featured researches published by Lingegowda S. Mangala.


Nature Medicine | 2006

Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma

Premal H. Thaker; Liz Y. Han; Aparna A. Kamat; Jesusa M.G. Arevalo; Rie Takahashi; Chunhua Lu; Nicholas B. Jennings; Guillermo N. Armaiz-Pena; James A. Bankson; Murali Ravoori; William M. Merritt; Yvonne G. Lin; Lingegowda S. Mangala; Tae Jin Kim; Robert L. Coleman; Charles N. Landen; Yang Li; Edward Felix; Angela Sanguino; Robert A. Newman; Mary Lloyd; David M. Gershenson; Vikas Kundra; Gabriel Lopez-Berestein; Susan K. Lutgendorf; Steven W. Cole; Anil K. Sood

Stress can alter immunological, neurochemical and endocrinological functions, but its role in cancer progression is not well understood. Here, we show that chronic behavioral stress results in higher levels of tissue catecholamines, greater tumor burden and more invasive growth of ovarian carcinoma cells in an orthotopic mouse model. These effects are mediated primarily through activation of the tumor cell cyclic AMP (cAMP)–protein kinase A (PKA) signaling pathway by the β2 adrenergic receptor (encoded by ADRB2). Tumors in stressed animals showed markedly increased vascularization and enhanced expression of VEGF, MMP2 and MMP9, and we found that angiogenic processes mediated the effects of stress on tumor growth in vivo. These data identify β-adrenergic activation of the cAMP–PKA signaling pathway as a major mechanism by which behavioral stress can enhance tumor angiogenesis in vivo and thereby promote malignant cell growth. These data also suggest that blocking ADRB-mediated angiogenesis could have therapeutic implications for the management of ovarian cancer.


Cancer Research | 2010

Sustained Small Interfering RNA Delivery by Mesoporous Silicon Particles

Takemi Tanaka; Lingegowda S. Mangala; Pablo Vivas-Mejia; René Nieves-Alicea; Aman P. Mann; Edna Mora; Hee Dong Han; Mian M.K. Shahzad; Xuewu Liu; Rohan Bhavane; Jianhua Gu; Jean R. Fakhoury; Ciro Chiappini; Chunhua Lu; Koji Matsuo; Biana Godin; Rebecca L. Stone; Alpa M. Nick; Gabriel Lopez-Berestein; Anil K. Sood; Mauro Ferrari

RNA interference (RNAi) is a powerful approach for silencing genes associated with a variety of pathologic conditions; however, in vivo RNAi delivery has remained a major challenge due to lack of safe, efficient, and sustained systemic delivery. Here, we report on a novel approach to overcome these limitations using a multistage vector composed of mesoporous silicon particles (stage 1 microparticles, S1MP) loaded with neutral nanoliposomes (dioleoyl phosphatidylcholine, DOPC) containing small interfering RNA (siRNA) targeted against the EphA2 oncoprotein, which is overexpressed in most cancers, including ovarian. Our delivery methods resulted in sustained EphA2 gene silencing for at least 3 weeks in two independent orthotopic mouse models of ovarian cancer following a single i.v. administration of S1MP loaded with EphA2-siRNA-DOPC. Furthermore, a single administration of S1MP loaded with-EphA2-siRNA-DOPC substantially reduced tumor burden, angiogenesis, and cell proliferation compared with a noncoding control siRNA alone (SKOV3ip1, 54%; HeyA8, 57%), with no significant changes in serum chemistries or in proinflammatory cytokines. In summary, we have provided the first in vivo therapeutic validation of a novel, multistage siRNA delivery system for sustained gene silencing with broad applicability to pathologies beyond ovarian neoplasms.


Cancer Cell | 2010

Regulation of Tumor Angiogenesis by EZH2

Chunhua Lu; Hee Dong Han; Lingegowda S. Mangala; Rouba Ali-Fehmi; Christopher S. Newton; Laurent Ozbun; Guillermo N. Armaiz-Pena; Wei Hu; Rebecca L. Stone; Adnan R. Munkarah; Murali Ravoori; Mian M.K. Shahzad; Jeong Won Lee; Edna Mora; Robert R. Langley; Amy R. Carroll; Koji Matsuo; Whitney A. Spannuth; Rosemarie Schmandt; Nicholas B. Jennings; Blake W. Goodman; Robert B. Jaffe; Alpa M. Nick; Hye Sun Kim; Eylem Güven; Ya Huey Chen; Long Yuan Li; Ming Chuan Hsu; Robert L. Coleman; George A. Calin

Although VEGF-targeted therapies are showing promise, new angiogenesis targets are needed to make additional gains. Here, we show that increased Zeste homolog 2 (EZH2) expression in either tumor cells or in tumor vasculature is predictive of poor clinical outcome. The increase in endothelial EZH2 is a direct result of VEGF stimulation by a paracrine circuit that promotes angiogenesis by methylating and silencing vasohibin1 (vash1). Ezh2 silencing in the tumor-associated endothelial cells inhibited angiogenesis mediated by reactivation of VASH1, and reduced ovarian cancer growth, which is further enhanced in combination with ezh2 silencing in tumor cells. Collectively, these data support the potential for targeting ezh2 as an important therapeutic approach.


Clinical Cancer Research | 2010

Targeted Gene Silencing Using RGD-Labeled Chitosan Nanoparticles

Hee Dong Han; Lingegowda S. Mangala; Jeong Won Lee; Mian M.K. Shahzad; Hye Sun Kim; Deyu Shen; Eun Ji Nam; Edna Mora; Rebecca L. Stone; Chunhua Lu; Sun Joo Lee; Ju Won Roh; Alpa M. Nick; Gabriel Lopez-Berestein; Anil K. Sood

Purpose: This study aimed to develop an Arg-Gly-Asp (RGD) peptide-labeled chitosan nanoparticle (RGD-CH-NP) as a novel tumor targeted delivery system for short interfering RNA (siRNA). Experimental Design: RGD peptide conjugated with chitosan by thiolation reaction was confirmed by proton-NMR (H-NMR). Binding of RGD-CH-NP with ανβ3 integrin was examined by flow cytometry and fluorescence microscopy. Antitumor efficacy was examined in orthotopic mouse models of ovarian carcinoma. Results: We show that RGD-CH-NP loaded with siRNA significantly increased selective intratumoral delivery in orthotopic animal models of ovarian cancer. In addition, we show targeted silencing of multiple growth-promoting genes (POSTN, FAK, and PLXDC1) along with therapeutic efficacy in the SKOV3ip1, HeyA8, and A2780 models using siRNA incorporated into RGD-CH-NP (siRNA/RGD-CH-NP). Furthermore, we show in vivo tumor vascular targeting using RGD-CH-NP by delivering PLXDC1-targeted siRNA into the ανβ3 integrin–positive tumor endothelial cells in the A2780 tumor-bearing mice. This approach resulted in significant inhibition of tumor growth compared with controls. Conclusions: This study shows that RGD-CH-NP is a novel and highly selective delivery system for siRNA with the potential for broad applications in human disease. Clin Cancer Res; 16(15); 3910–22. ©2010 AACR.


Nature Communications | 2013

Tumour angiogenesis regulation by the miR-200 family

Chad V. Pecot; Rajesha Rupaimoole; Da Yang; Rehan Akbani; Cristina Ivan; Chunhua Lu; Sherry Y. Wu; Hee Dong Han; Maitri Y. Shah; Cristian Rodriguez-Aguayo; Justin Bottsford-Miller; Yuexin Liu; Sang Bae Kim; Anna K. Unruh; Vianey Gonzalez-Villasana; Li Huang; Behrouz Zand; Myrthala Moreno-Smith; Lingegowda S. Mangala; Morgan Taylor; Heather J. Dalton; Vasudha Sehgal; Yunfei Wen; Yu Kang; Keith A. Baggerly; Ju Seog Lee; Prahlad T. Ram; Murali Ravoori; Vikas Kundra; Xinna Zhang

The miR-200 family is well known to inhibit the epithelial-mesenchymal transition, suggesting it may therapeutically inhibit metastatic biology. However, conflicting reports regarding the role of miR-200 in suppressing or promoting metastasis in different cancer types have left unanswered questions. Here we demonstrate a difference in clinical outcome based on miR-200s role in blocking tumour angiogenesis. We demonstrate that miR-200 inhibits angiogenesis through direct and indirect mechanisms by targeting interleukin-8 and CXCL1 secreted by the tumour endothelial and cancer cells. Using several experimental models, we demonstrate the therapeutic potential of miR-200 delivery in ovarian, lung, renal and basal-like breast cancers by inhibiting angiogenesis. Delivery of miR-200 members into the tumour endothelium resulted in marked reductions in metastasis and angiogenesis, and induced vascular normalization. The role of miR-200 in blocking cancer angiogenesis in a cancer-dependent context defines its utility as a potential therapeutic agent.


Nature | 2014

miR-34a Blocks Osteoporosis and Bone Metastasis by Inhibiting Osteoclastogenesis and Tgif2

Jing Y. Krzeszinski; Wei Wei; HoangDinh Huynh; Zixue Jin; Xunde Wang; Tsung Cheng Chang; Xian Jin Xie; Lin He; Lingegowda S. Mangala; Gabriel Lopez-Berestein; Anil K. Sood; Joshua T. Mendell; Yihong Wan

Bone-resorbing osteoclasts significantly contribute to osteoporosis and bone metastases of cancer. MicroRNAs play important roles in physiology and disease, and present tremendous therapeutic potential. Nonetheless, how microRNAs regulate skeletal biology is underexplored. Here we identify miR-34a as a novel and critical suppressor of osteoclastogenesis, bone resorption and the bone metastatic niche. miR-34a is downregulated during osteoclast differentiation. Osteoclastic miR-34a-overexpressing transgenic mice exhibit lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibit elevated bone resorption and reduced bone mass. Consequently, ovariectomy-induced osteoporosis, as well as bone metastasis of breast and skin cancers, are diminished in osteoclastic miR-34a transgenic mice, and can be effectively attenuated by miR-34a nanoparticle treatment. Mechanistically, we identify transforming growth factor-β-induced factor 2 (Tgif2) as an essential direct miR-34a target that is pro-osteoclastogenic. Tgif2 deletion reduces bone resorption and abolishes miR-34a regulation. Together, using mouse genetic, pharmacological and disease models, we reveal miR-34a as a key osteoclast suppressor and a potential therapeutic strategy to confer skeletal protection and ameliorate bone metastasis of cancers.


Journal of Clinical Investigation | 2007

An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic

Ariel Fernández; Angela Sanguino; Zhenghong Peng; Eylem Ozturk; Jianping Chen; Alejandro Crespo; Sarah Wulf; Aleksander Shavrin; Chaoping Qin; Jianpeng Ma; Jonathan C. Trent; Yvonne G. Lin; Hee Dong Han; Lingegowda S. Mangala; James A. Bankson; Juri G. Gelovani; Allen M. Samarel; William G. Bornmann; Anil K. Sood; Gabriel Lopez-Berestein

Targeting kinases is central to drug-based cancer therapy but remains challenging because the drugs often lack specificity, which may cause toxic side effects. Modulating side effects is difficult because kinases are evolutionarily and hence structurally related. The lack of specificity of the anticancer drug imatinib enables it to be used to treat chronic myeloid leukemia, where its target is the Bcr-Abl kinase, as well as a proportion of gastrointestinal stromal tumors (GISTs), where its target is the C-Kit kinase. However, imatinib also has cardiotoxic effects traceable to its impact on the C-Abl kinase. Motivated by this finding, we made a modification to imatinib that hampers Bcr-Abl inhibition; refocuses the impact on the C-Kit kinase; and promotes inhibition of an additional target, JNK, a change that is required to reinforce prevention of cardiotoxicity. We established the molecular blueprint for target discrimination in vitro using spectrophotometric and colorimetric assays and through a phage-displayed kinase screening library. We demonstrated controlled inhibitory impact on C-Kit kinase in human cell lines and established the therapeutic impact of the engineered compound in a novel GIST mouse model, revealing a marked reduction of cardiotoxicity. These findings identify the reengineered imatinib as an agent to treat GISTs with curbed side effects and reveal a bottom-up approach to control drug specificity.


Clinical Cancer Research | 2009

Surgical stress promotes tumor growth in ovarian carcinoma.

Jeong Won Lee; Mian M.K. Shahzad; Yvonne G. Lin; Guillermo N. Armaiz-Pena; Lingegowda S. Mangala; Hee Dong Han; Hye Sun Kim; Eun Ji Nam; Nicholas B. Jennings; Jyotsnabaran Halder; Alpa M. Nick; Rebecca L. Stone; Chunhua Lu; Susan K. Lutgendorf; Steve W. Cole; Anna Lokshin; Anil K. Sood

Purpose: Surgical stress has been suggested to facilitate the growth of preexisting micrometastases as well as small residual tumor postoperatively. The purpose of this study was to examine the effects of surgical stress on ovarian cancer growth and to determine underlying mechanisms responsible for increased growth. Experimental Design: To mimic the effects of surgery, we did a laparotomy or mastectomy under isoflurane inhalation on athymic nude mice 4 days after i.p. tumor cell injection. Propranolol infusion via Alzet pumps was used to block the influence of sympathetic nervous system activation by surgical stress. Results: In both HeyA8 and SKOV3ip1 models, the mice in the laparotomy and mastectomy groups had significantly greater tumor weight (P < 0.05) and nodules (P < 0.05) compared with anesthesia only controls. There was no increase in tumor weight following surgery in the β-adrenergic receptor–negative RMG-II model. Propranolol completely blocked the effects of surgical stress on tumor growth, indicating a critical role for β-adrenergic receptor signaling in mediating the effects of surgical stress on tumor growth. In the HeyA8 and SKOV3ip1 models, surgery significantly increased microvessel density (CD31) and vascular endothelial growth factor expression, which were blocked by propranolol treatment. Conclusion: These results indicate that surgical stress could enhance tumor growth and angiogenesis, and β-blockade might be effective in preventing such effects.


Journal of the National Cancer Institute | 2008

Therapeutic Targeting of Neuropilin-2 on Colorectal Carcinoma Cells Implanted in the Murine Liver

Michael J. Gray; George Van Buren; Nikolaos A. Dallas; Ling Xia; Xuemei Wang; Anthony D. Yang; Ray Somcio; Yvonne G. Lin; Sherry Lim; Fan Fan; Lingegowda S. Mangala; Thiruvengadam Arumugam; Craig D. Logsdon; Gabriel Lopez-Berestein; Anil K. Sood; Lee M. Ellis

BACKGROUND Neuropilin-2 (NRP2) is a high-affinity kinase-deficient receptor for vascular endothelial growth factor (VEGF) and semaphorin 3F. We investigated its function in human colorectal cancers. METHODS Immunohistochemistry and immunoblotting were used to assess NRP2 expression levels in colorectal tumors and colorectal cancer cell lines, respectively. HCT-116 colorectal cancer cells stably transfected with short hairpin RNA (shRNAs) against NRP2 or control shRNAs were assayed for proliferation by the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and for activation of the VEGFR1 pathway by immunoblotting. Soft agar assays, Annexin V staining, and Boyden chamber assays were used to examine anchorage-independent growth, apoptosis in response to hypoxia, and cell migration/invasion, respectively, in HCT-116 transfectants. Tumor growth and metastasis were analyzed in mice (groups of 10) injected with shRNA-expressing HCT-116 cells. The effect of in vivo targeting of NRP2 by small interfering RNA (siRNA) on the growth of hepatic colorectal tumors derived from luciferase-expressing HCT-116 cells was assessed by measuring changes in bioluminescence and final tumor volumes. All statistical tests were two-sided. RESULTS NRP2 expression was substantially higher in tumors than in adjacent mucosa. HCT-116 transfectants with reduced NRP2 levels had reduced VEGFR1 signaling, but proliferation was unchanged. Anchorage-independent growth, survival under hypoxic conditions, and motility/invasiveness were also reduced. In vivo, HCT-116 transfectants with reduced NRP2 demonstrated decreased tumor growth, fewer metastases, and increased apoptosis compared with control cells. Hepatic colorectal tumors in mice treated with NRP2 siRNAs were statistically significantly smaller than those in mice treated with control siRNAs (at 28 days after implantation, mean control siRNAs = 420 mm3, mean NRP2 siRNAs = 36 mm3, NRP2 vs control: difference = 385 mm3, 95% confidence interval = 174 mm3 to 595 mm3, P = .005). CONCLUSION NRP2 on colorectal carcinoma cells is important for tumor growth and is a potential therapeutic target in human cancers where it is expressed.


Oncogene | 2007

Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells.

Lingegowda S. Mangala; Jansina Y. Fok; I R Zorrilla-Calancha; Amit Verma; Kapil Mehta

Distant metastasis is frequently observed in patients with breast cancer and is a major cause of cancer-related deaths in these patients. Currently, very little is known about the mechanisms that underlie the development of the metastatic phenotype in breast cancer cells. We previously found that metastatic breast cancer cells express high levels of tissue transglutaminase (TG2), but established no direct link between TG2 and metastasis. In this study, we hypothesized that TG2 plays a role in conferring the metastatic phenotype to breast cancer cells. The results obtained suggested that increased expression of TG2 in breast cancer cells contributes to their increased survival, invasion and motility. We further found that TG2 protein in a metastatic breast cancer MDA-MB231 cells was present on the cell surface in close association with integrins β1, β4 and β5. Downregulation of endogenous TG2 by small interfering RNA inhibited fibronectin (Fn)-mediated cell attachment, survival and invasion. Conversely, ectopic expression of TG2 augmented invasion of breast cancer cells and attachment to Fn-coated surfaces. We conclude that TG2 expression in breast cancer cells plays an important role in the development of the metastatic phenotype.

Collaboration


Dive into the Lingegowda S. Mangala's collaboration.

Top Co-Authors

Avatar

Anil K. Sood

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel Lopez-Berestein

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sunila Pradeep

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cristian Rodriguez-Aguayo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Guillermo N. Armaiz-Pena

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alpa M. Nick

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Archana S. Nagaraja

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sherry Y. Wu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rajesha Rupaimoole

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mian M.K. Shahzad

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge