Lingfeng Kong
Ocean University of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lingfeng Kong.
PLOS ONE | 2012
Xuelin Zhao; Hong Yu; Lingfeng Kong; Qi Li
Background Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas is considered to be tolerant to relative low salinity. The genes that regulate C. gigas responses to osmotic stress were monitored using the next-generation sequencing of whole transcriptome with samples taken from gills. By RNAseq technology, transcript catalogs of up- and down-regulated genes were generated from the oysters exposed to low and optimal salinity seawater. Methodology/Principal Findings Through Illumina sequencing, we reported 1665 up-regulated transcripts and 1815 down-regulated transcripts. A total of 45771 protein-coding contigs were identified from two groups based on sequence similarities with known proteins. As determined by GO annotation and KEGG pathway mapping, functional annotation of the genes recovered diverse biological functions and processes. The genes that changed expression significantly were highly represented in cellular process and regulation of biological process, intracellular and cell, binding and protein binding according to GO annotation. The results highlighted genes related to osmoregulation, signaling and interactions of osmotic stress response, anti-apoptotic reactions as well as immune response, cell adhesion and communication, cytoskeleton and cell cycle. Conclusions/Significance Through more than 1.5 million sequence reads and the expression data of the two libraries, the study provided some useful insights into signal transduction pathways in oysters and offered a number of candidate genes as potential markers of tolerance to hypoosmotic stress for oysters. In addition, the characterization of C. gigas transcriptome will not only provide a better understanding of the molecular mechanisms about the response to osmotic stress of the oysters, but also facilitate research into biological processes to find underlying physiological adaptations to hypoosmotic shock for marine invertebrates.
Molecular Ecology | 2014
Gang Ni; Qi Li; Lingfeng Kong; Hong Yu
The maturation of marine phylogeography depends on integration of comparative information across different regions globally. The northwestern Pacific, characterized by unique tectonic setting, however, is still underrepresented. This study seeks to highlight its phylogeographical history based on the available population data, focusing on three seas: the East China Sea (ECS), the South China Sea (SCS) and the Sea of Japan (SOJ). We first conducted a literature survey to evaluate current research efforts and then reanalysed the population structure, historical demography and genealogy for two selections of studies (namely ‘the ECS category’ and ‘the multiple‐sea category’) to elucidate the evolutionary processes within and across the seas, respectively. For the ECS category, the meta‐analyses revealed most studies displayed a shallow phylogeny, indicating a single origin from the sea. Significant population structure was commonplace, particularly in molluck and crustacean studies, with proportions of 89% and 80%, respectively. Nearly all studies selected showed signals of population expansion: the times estimated were closely linked to a period of ~120–140 Kya rather than the last glacial maximum. For the latter category, divergent intraspecific lineages appeared among seas and overlapped in the adjacent regions, a pattern implying each sea had served as an independent refugium during glaciations. The genetic splits, however, were estimated to arise from separate events dating from late Miocene to middle Pleistocene. As phylogeography is still in its infancy in the region, more effort is needed to test and complement the general rules abstracted here. Finally, challenges and prospects were discussed to accelerate further research.
Molecular Biology Reports | 2011
Yanwei Feng; Qi Li; Lingfeng Kong; Xiaodong Zheng
DNA sequence data enable not only the inference of phylogenetic relationships but also provide an efficient method for species-level identifications under the terms DNA barcoding or DNA taxonomy. In this study, we have sequenced partial sequences of mitochondrial COI and 16S rRNA genes from 63 specimens of 8 species of Pectinidae to assess whether DNA barcodes can efficiently distinguish these species. Sequences from homologous regions of four other species of this family were gathered from GenBank. Comparisons of within and between species levels of sequence divergence showed that genetic variation between species exceeds variation within species. When using neighbour-joining clustering based on COI and 16S genes, all species fell into reciprocally monophyletic clades with high bootstrap values. These evidenced that these scallop species can be efficiently identified by DNA barcoding. Evolutionary relationships of Pectinidae were also examined using the two mitochondrial genes. The results are almost consistent with Waller’s classification, which was proposed on the basis of shell microstructure and the morphological characteristics of juveniles.
Molecular Ecology Resources | 2011
Jun Liu; Qi Li; Lingfeng Kong; Hong Yu; Xiaodong Zheng
Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance‐based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter‐ and intraspecific genetic divergences were assessed. Species forming well‐differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra‐ and interspecific genetic divergences for COI were 0–1.4% (maximum 2.2%) and 2.6–32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis.
PLOS ONE | 2012
Yang Yuan; Qi Li; Hong Yu; Lingfeng Kong
Background Taxonomy and phylogeny of subclass Heterodonta including Tellinoidea are long-debated issues and a complete agreement has not been reached yet. Mitochondrial (mt) genomes have been proved to be a powerful tool in resolving phylogenetic relationship. However, to date, only ten complete mitochondrial genomes of Heterodonta, which is by far the most diverse major group of Bivalvia, have been determined. In this paper, we newly sequenced the complete mt genomes of six species belonging to Heterodonta in order to resolve some problematical relationships among this subclass. Principal Findings The complete mt genomes of six species vary in size from 16,352 bp to 18,182. Hairpin-like secondary structures are found in the largest non-coding regions of six freshly sequenced mt genomes, five of which contain tandem repeats. It is noteworthy that two species belonging to the same genus show different gene arrangements with three translocations. The phylogenetic analysis of Heterodonta indicates that Sinonovacula constricta, distant from the Solecurtidae belonging to Tellinoidea, is as a sister group with Solen grandis of family Solenidae. Besides, all five species of Tellinoidea cluster together, while Sanguinolaria diphos has closer relationship with Solecurtus divaricatus, Moerella iridescens and Semele scaba rather than with Sanguinolaria olivacea. Conclusions/Significance By comparative study of gene order rearrangements and phylogenetic relationships of the five species belonging to Tellinoidea, our results support that comparisons of mt gene order rearrangements, to some extent, are a useful tool for phylogenetic studies. Based on phylogenetic analyses of multiple protein-coding genes, we prefer classifying the genus Sinonovacula within the superfamily Solenoidea and not the superfamily Tellinoidea. Besides, both gene order and sequence data agree that Sanguinolaria (Psammobiidae) is not monophyletic. Nevertheless, more studies based on more mt genomes via combination of gene order and phylogenetic analysis are needed to further understand the phylogenetic relationships in subclass Heterodonta.
PLOS ONE | 2011
Jun Chen; Qi Li; Lingfeng Kong; Hong Yu
Background The species boundaries of some venerids are difficult to define based solely on morphological features due to their indistinct intra- and interspecific phenotypic variability. An unprecedented biodiversity crisis caused by human activities has emerged. Thus, to access the biological diversity and further the conservation of this taxonomically muddling bivalve group, a fast and simple approach that can efficiently examine species boundaries and highlight areas of unrecognized diversity is urgently needed. DNA barcoding has proved its effectiveness in high-volume species identification and discovery. In the present study, Chinese fauna was chosen to examine whether this molecular biomarker is sensitive enough for species delimitation, and how it complements taxonomy and explores species diversity. Methodology/Principal Findings A total of 315 specimens from around 60 venerid species were included, qualifying the present study as the first major analysis of DNA barcoding for marine bivalves. Nearly all individuals identified to species level based on morphological traits possessed distinct barcode clusters, except for the specimens of one species pair. Among the 26 individuals that were not assigned binomial names a priori, twelve respectively nested within a species genealogy. The remaining individuals formed five monophyletic clusters that potentially represent species new to science or at least unreported in China. Five putative hidden species were also uncovered in traditional morphospecies. Conclusions/Significance The present study shows that DNA barcoding is effective in species delimitation and can aid taxonomists by indicating useful diagnostic morphological traits, informing needful revision, and flagging unseen species. Moreover, the BOLD system, which deposits barcodes, morphological, geographical and other data, has the potential as a convenient taxonomic platform.
PLOS ONE | 2011
Shanmei Zou; Qi Li; Lingfeng Kong; Hong Yu; Xiaodong Zheng
Background DNA barcoding has recently been proposed as a promising tool for the rapid species identification in a wide range of animal taxa. Two broad methods (distance and monophyly-based methods) have been used. One method is based on degree of DNA sequence variation within and between species while another method requires the recovery of species as discrete clades (monophyly) on a phylogenetic tree. Nevertheless, some issues complicate the use of both methods. A recently applied new technique, the character-based DNA barcode method, however, characterizes species through a unique combination of diagnostic characters. Methodology/Principal Findings Here we analyzed 108 COI and 102 16S rDNA sequences of 40 species of Neogastropoda from a wide phylogenetic range to assess the performance of distance, monophyly and character-based methods of DNA barcoding. The distance-based method for both COI and 16S rDNA genes performed poorly in terms of species identification. Obvious overlap between intraspecific and interspecific divergences for both genes was found. The “10× rule” threshold resulted in lumping about half of distinct species for both genes. The neighbour-joining phylogenetic tree of COI could distinguish all species studied. However, the 16S rDNA tree could not distinguish some closely related species. In contrast, the character-based barcode method for both genes successfully identified 100% of the neogastropod species included, and performed well in discriminating neogastropod genera. Conclusions/Significance This present study demonstrates the effectiveness of the character-based barcoding method for species identification in different taxonomic levels, especially for discriminating the closely related species. While distance and monophyly-based methods commonly use COI as the ideal gene for barcoding, the character-based approach can perform well for species identification using relatively conserved gene markers (e.g., 16S rDNA in this study). Nevertheless, distance and monophyly-based methods, especially the monophyly-based method, can still be used to flag species.
Molecular Ecology Resources | 2012
Lina Dai; Xiaodong Zheng; Lingfeng Kong; Qi Li
Coleoids are part of the Cephalopoda class, which occupy an important position in most oceans both at an ecological level and at a commercial level. Nevertheless, some coleoid species are difficult to distinguish with traditional morphological identification in cases when specimens are heavily damaged during collection or when closely related taxa are existent. As a useful tool for rapid species assignment, DNA barcoding may offer significant potential for coleoid identification. Here, we used two mitochondrial fragments, cytochrome c oxidase I and the large ribosomal subunit (16S rRNA), to assess whether 34 coleoids accounting for about one‐third of the Chinese coleoid fauna could be identified by DNA barcoding technique. The pairwise intra‐ and interspecific distances were assessed, and relationships among species were estimated by NJ and Bayesian analyses. High levels of genetic differentiation within Loliolus beka led to an overlap between intra‐ and interspecific distances. All remaining species forming well‐differentiated clades in the NJ and Bayesian trees were identical for both fragments. Loliolus beka possessed two mitochondrial lineages with high levels of intraspecific distances, suggesting the occurrence of cryptic species. This study confirms the efficacy of DNA barcoding for identifying species as well as discovering cryptic diversity of Chinese coleoids. It also lays a foundation for other ecological and biological studies of Coleoidea.
Molecular Ecology | 2011
Jun Liu; Qi Li; Lingfeng Kong; Xiaodong Zheng
Cryptic species have been increasingly revealed in the marine realm through an analytical approach incorporating multiple lines of evidence (e.g., mtDNA, nuclear genes and morphology). Illustrations of cryptic taxa improve our understanding of species diversity and evolutionary histories within marine animals. The pen shell Atrina pectinata is known to exhibit extensive morphological variations that may harbour cryptic diversity. In this study, we investigated A. pectinata populations along the coast of China and one from Japan to explore possible cryptic diversity and hybridization using a combination of mitochondrial (cytochrome c oxidase subunit I, mtCOI) and nuclear (ribosomal internal transcribed spacer, nrITS) genes as well as morphology. Phylogenetic analyses of mtCOI ‘DNA barcoding gene’ sequences resolved six divergent lineages with intralineage divergences between 0.4% and 0.8%. Interlineage sequence differences ranged from 4.3% to 22.0%, suggesting that six candidate cryptic species are present. The nrITS gene revealed five deep lineages with Kimura 2‐parameter distances of 3.7–30.3%. The five nuclear lineages generally corresponded to mtCOI lineages 1–4 and (5 + 6), suggestive of five distinct evolutionary lineages. Multiple nrITS sequences of significant variance were found within an individual, clearly implying recent hybridization events between/among the evolutionary lineages, which contributed to cytonuclear discordance. Morphologically, five morphotypes matched the five genetic lineages, although the intermediates may well blur the boundaries of different morphotypes. This study demonstrates the importance of combining multiple lines of evidence to explore species cryptic diversity and past evolutionary histories.
Animal Genetics | 2009
Qi Li; L. Chen; Lingfeng Kong
We present the first genetic maps of the sea cucumber (Apostichopus japonicus), constructed with an F(1) pseudo-testcross strategy. The 37 amplified fragment length polymorphism (AFLP) primer combinations chosen identified 484 polymorphic markers. Of the 21 microsatellite primer pairs tested, 16 identified heterozygous loci in one or other parent, and six were fully informative, as they segregated in both parents. The female map comprised 163 loci, spread over 20 linkage groups (which equals the haploid chromosome number), and spanned 1522.0 cM, with a mean marker density of 9.3 cM. The equivalent figures for the male map were 162 loci, 21 linkage groups, 1276.9 and 7.9 cM. About 2.5% of the AFLP markers displayed segregation distortion and were not used for map construction. The estimated coverage of the genome was 84.8% for the female map and 83.4% for the male map. The maps generated will serve as a basis for the construction of a high-resolution genetic map and mapping of the functional genes and quantitative trait loci, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.