Linghong Huang
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linghong Huang.
Kidney International | 2009
Linghong Huang; John L. Haylor; Zoe Hau; Richard A. Jones; Melissa Vickers; Bart Wagner; Martin Griffin; Robert E. Saint; Ian G. C. Coutts; A. Meguid El Nahas; Timothy S. Johnson
Diabetic nephropathy is characterized by excessive extracellular matrix accumulation resulting in renal scarring and end-stage renal disease. Previous studies have suggested that transglutaminase type 2, by formation of its protein crosslink product epsilon-(gamma-glutamyl)lysine, alters extracellular matrix homeostasis, causing basement membrane thickening and expansion of the mesangium and interstitium. To determine whether transglutaminase inhibition can slow the progression of chronic experimental diabetic nephropathy over an extended treatment period, the inhibitor NTU281 was given to uninephrectomized streptozotocin-induced diabetic rats for up to 8 months. Effective transglutaminase inhibition significantly reversed the increased serum creatinine and albuminuria in the diabetic rats. These improvements were accompanied by a fivefold decrease in glomerulosclerosis and a sixfold reduction in tubulointerstitial scarring. This was associated with reductions in collagen IV accumulation by 4 months, along with reductions in collagens I and III by 8 months. This inhibition also decreased the number of myofibroblasts, suggesting that tissue transglutaminase may play a role in myofibroblast transformation. Our study suggests that transglutaminase inhibition ameliorates the progression of experimental diabetic nephropathy and can be considered for clinical application.
Matrix Biology | 2009
Marie Fisher; Richard A. Jones; Linghong Huang; John L. Haylor; Meguid El Nahas; Martin Griffin; Timothy S. Johnson
The up-regulation and trafficking of tissue transglutaminase (TG2) by tubular epithelial cells (TEC) has been implicated in the development of kidney scarring. TG2 catalyses the crosslinking of proteins via the formation of highly stable epsilon(gamma-glutamyl) lysine bonds. We have proposed that TG2 may contribute to kidney scarring by accelerating extracellular matrix (ECM) deposition and by stabilising the ECM against proteolytic decay. To investigate this, we have studied ECM metabolism in Opossum kidney (OK) TEC induced to over-express TG2 by stable transfection and in tubular cells isolated from TG2 knockout mice. Increasing the expression of TG2 led to increased extracellular TG2 activity (p<0.05), elevated epsilon(gamma-glutamyl) lysine crosslinking in the ECM and higher levels of ECM collagen per cell by (3)H-proline labelling. Immunofluorescence demonstrated that this was attributable to increased collagen III and IV levels. Higher TG2 levels were associated with an accelerated collagen deposition rate and a reduced ECM breakdown by matrix metalloproteinases (MMPs). In contrast, a lack of TG2 was associated with reduced epsilon(gamma-glutamyl) lysine crosslinking in the ECM, causing reduced ECM collagen levels and lower ECM per cell. We report that TG2 contributes to ECM accumulation primarily by accelerating collagen deposition, but also by altering the susceptibility of the tubular ECM to decay. These findings support a role for TG2 in the expansion of the ECM associated with kidney scarring.
Nephron extra | 2013
Linghong Huang; Alessandra Scarpellini; Muriel Funck; Elisabetta Verderio; Timothy S. Johnson
Background: Genetically modified mice are used to investigate disease and assess potential interventions. However, research into kidney fibrosis is hampered by a lack of models of chronic kidney disease (CKD) in mice. Recently, aristolochic acid nephropathy (AAN), characterised by severe tubulointerstitial fibrosis, has been identified as a cause of end stage kidney disease and proposed as a model of CKD. Published studies have used various dosing regimens, species and strains, with variable outcomes. Therefore, we aimed to develop a standardised protocol to develop tubulointerstitial fibrosis using pure aristolochic acid I (AAI) in C57BL/6 mice. Methods: AAI dose optimisation was performed by intraperitoneal injection of AAI at varying dose, frequency and duration. Kidney function was assessed by serum creatinine. Fibrosis was quantified by hydroxyproline levels and Masson’s Trichrome staining. Specific collagens were measured by immunofluorescent staining. Results: Single doses of AAI of >10 mg/kg caused acute kidney failure and death. Lower doses of 2.5 mg/kg needed to be administrated more than weekly to cause significant fibrosis. 3 mg/kg once every 3 days for 6 weeks followed by a disease development time of 6 weeks after AAI led to reduced kidney weight and function. Substantial tubulointerstitial fibrosis occurred, with males more severely affected. Increased deposition of collagen I, III and IV contributed to fibrosis, with collagen III and IV higher in males. Conclusions: AAN can be induced in C57BL/6 mice. The regimen of 3 mg/kg every 3 days for 6 weeks followed by 6 weeks of disease development time gives substantial tubulointerstitial fibrosis with lesions similar to those in humans.
Journal of The American Society of Nephrology | 2014
Alessandra Scarpellini; Linghong Huang; Izhar Burhan; Nina Schroeder; Muriel Funck; Timothy S. Johnson; Elisabetta Verderio
Transglutaminase type 2 (TG2) is an extracellular matrix crosslinking enzyme with a pivotal role in kidney fibrosis. The interaction of TG2 with the heparan sulfate proteoglycan syndecan-4 (Sdc4) regulates the cell surface trafficking, localization, and activity of TG2 in vitro but remains unstudied in vivo. We tested the hypothesis that Sdc4 is required for cell surface targeting of TG2 and the development of kidney fibrosis in CKD. Wild-type and Sdc4-null mice were subjected to unilateral ureteric obstruction and aristolochic acid nephropathy (AAN) as experimental models of kidney fibrosis. Analysis of renal scarring by Masson trichrome staining, kidney hydroxyproline levels, and collagen immunofluorescence demonstrated progressive fibrosis associated with increases in extracellular TG2 and TG activity in the tubulointerstitium in both models. Knockout of Sdc-4 reduced these effects and prevented AAN-induced increases in total and active TGF-β1. In wild-type mice subjected to AAN, extracellular TG2 colocalized with Sdc4 in the tubular interstitium and basement membrane, where TG2 also colocalized with heparan sulfate chains. Heparitinase I, which selectively cleaves heparan sulfate, completely abolished extracellular TG2 in normal and diseased kidney sections. In conclusion, the lack of Sdc4 heparan sulfate chains in the kidneys of Sdc4-null mice abrogates injury-induced externalization of TG2, thereby preventing profibrotic crosslinking of extracellular matrix and recruitment of large latent TGF-β1. This finding suggests that targeting the TG2-Sdc4 interaction may provide a specific interventional strategy for the treatment of CKD.
Journal of Biological Chemistry | 2011
Che-Yi Chou; Andrew J. Streets; Philip F. Watson; Linghong Huang; Elisabetta Verderio; Timothy S. Johnson
Transglutaminase type 2 (TG2) catalyzes the formation of an ϵ-(γ-glutamyl)-lysine isopeptide bond between adjacent peptides or proteins including those of the extracellular matrix (ECM). Elevated extracellular TG2 leads to accelerated ECM deposition and reduced clearance that underlie tissue scarring and fibrosis. The extracellular trafficking of TG2 is crucial to its role in ECM homeostasis; however, the mechanism by which TG2 escapes the cell is unknown as it has no signal leader peptide and therefore cannot be transported classically. Understanding TG2 transport may highlight novel mechanisms to interfere with the extracellular function of TG2 as isoform-specific TG2 inhibitors remain elusive. Mammalian expression vectors were constructed containing domain deletions of TG2. These were transfected into three kidney tubular epithelial cell lines, and TG2 export was assessed to identify critical domains. Point mutation was then used to highlight specific sequences within the domain required for TG2 export. The removal of β-sandwich domain prevented all TG2 export. Mutations of Asp94 and Asp97 within the N-terminal β-sandwich domain were identified as crucial for TG2 externalization. These form part of a previously identified fibronectin binding domain (88WTATVVDQQDCTLSLQLTT106). However, siRNA knockdown of fibronectin failed to affect TG2 export. The sequence 88WTATVVDQQDCTLSLQLTT106 within the β-sandwich domain of TG2 is critical to its export in tubular epithelial cell lines. The extracellular trafficking of TG2 is independent of fibronectin.
Nephrology Dialysis Transplantation | 2010
Linghong Huang; John L. Haylor; Marie Fisher; Zoe Hau; A. Meguid El Nahas; Martin Griffin; Timothy S. Johnson
BACKGROUND Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-β1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-β is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-β to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable ε(γ-glutamyl)-lysine cross-link between peptides. METHODS To investigate if changes in TG activity can modulate TGF-β1 activation, we used the mink lung cell bioassay to assess TGF-β activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells. RESULTS Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-β1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-β recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-β binding protein producing fibroblasts. CONCLUSIONS Regulation of TG2 directly influences the level of active TGF-β1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-β1 activation and recruitment.
Laboratory Investigation | 2013
Nick Hornigold; Timothy S. Johnson; Linghong Huang; John L. Haylor; Martin Griffin; Andrew Mooney
Glomerulosclerosis of any cause is characterized by loss of functional glomerular cells and deposition of excessive amounts of interstitial collagens including collagen I. We have previously reported that mesangial cell attachment to collagen I leads to upregulation of Hic-5 in vitro, which mediates mesangial cell apoptosis. Furthermore, glomerular Hic-5 expression was increased during the progression of experimental glomerulosclerosis. We hypothesized that reducing collagen I accumulation in glomerulosclerosis would in turn lower Hic-5 expression, reducing mesangial cell apoptosis, and thus maintaining glomerular integrity. We examined archive renal tissue from rats undergoing experimental diabetic glomerulosclerosis, treated with the transglutaminase-2 inhibitor NTU281. Untreated animals exhibited increased glomerular collagen I accumulation, associated with increased glomerular Hic-5 expression, apoptosis, and mesangial myofibroblast transdifferentiation characterized by α-smooth muscle actin (α-SMA) expression. NTU281 treatment reduced glomerular collagen I accumulation, Hic-5 and α-SMA expression, and apoptosis. Proteinurea and serum creatinine levels were significantly reduced in animals with reduced Hic-5 expression. In vitro studies of Hic-5 knockdown or overexpression show that mesangial cell apoptosis and expression of both α-SMA and collagen I are Hic-5 dependent. Together, these data suggest that there exists, in vitro and in vivo, a positive feedback loop whereby increased levels of collagen I lead to increased mesangial Hic-5 expression favoring not only increased apoptosis, but also mesangial myofibroblast transdifferentiation and increased collagen I expression. Prevention of collagen I accumulation interrupts this Hic-5-dependent positive feedback loop, preserving glomerular architecture, cellular phenotype, and function.
Nephron Clinical Practice | 2012
Marios Papasotiriou; Pantelitsa Kalliakmani; Linghong Huang; Miltiadis Gerolymos; Dimitrios S. Goumenos; Timothy S. Johnson
Background/Aims: Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in adults. Transglutaminase type 2 (TG2) contributes to renal scarring through altering extracellular matrix homeostasis. In this study we hypothesized that immunosuppressive treatment would downregulate TG2 expression leading to reduced fibrosis, and subsequently TG2 would have value as a biomarker of progression of MN. Methods: TG2 expression was studied by immunofluorescence in kidney biopsy sections from 32 patients with MN and was compared to control biopsies. All patients were subsequently treated by a combination of cyclosporine and prednisolone for at least 24 months with a repeat biopsy taken in 14 patients. Results: Twenty-two out of 32 patients showed stable renal function, whereas 10 showed doubling of baseline serum creatinine and 5 of them reached end-stage renal disease during the 5-year follow-up. At the end of the follow-up, 22 out of 32 patients were in remission of nephrotic syndrome. TG2 immunostaining was increased in sections from patients with MN compared to healthy controls (p = 0.0002). TG2 at diagnosis was more intense in patients with severer interstitial fibrosis and advanced glomerular sclerosis. TG2 significantly increased in most patients in the repeat biopsies after treatment (p < 0.0001), whereas patients who showed a marked increase in interstitial fibrosis in the repeat biopsy had significantly more TG2 expression in the first biopsy (p = 0.02). Conclusion: TG2 expression is increased in MN patients and continues to increase despite immunosuppressive treatment. However, early detection of TG2 might be of value in MN since increased TG2 production seems to precede extensive interstitial fibrosis.
Journal of The American Society of Nephrology | 2018
Giulia Furini; Nina Schroeder; Linghong Huang; David J. Boocock; Alessandra Scarpellini; Clare Coveney; Elisa Tonoli; Raghavendran Ramaswamy; Graham Ball; Claudia Verderio; Timothy S. Johnson; Elisabetta Verderio
Increased export of transglutaminase-2 (TG2) by tubular epithelial cells (TECs) into the surrounding interstitium modifies the extracellular homeostatic balance, leading to fibrotic membrane expansion. Although silencing of extracellular TG2 ameliorates progressive kidney scarring in animal models of CKD, the pathway through which TG2 is secreted from TECs and contributes to disease progression has not been elucidated. In this study, we developed a global proteomic approach to identify binding partners of TG2 responsible for TG2 externalization in kidneys subjected to unilateral ureteric obstruction (UUO) using TG2 knockout kidneys as negative controls. We report a robust and unbiased analysis of the membrane interactome of TG2 in fibrotic kidneys relative to the entire proteome after UUO, detected by SWATH mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD008173. Clusters of exosomal proteins in the TG2 interactome supported the hypothesis that TG2 is secreted by extracellular membrane vesicles during fibrosis progression. In established TEC lines, we found TG2 in vesicles of both endosomal (exosomes) and plasma membrane origin (microvesicles/ectosomes), and TGF-β1 stimulated TG2 secretion. Knockout of syndecan-4 (SDC4) greatly impaired TG2 exosomal secretion. TG2 coprecipitated with SDC4 from exosome lysate but not ectosome lysate. Ex vivo, EGFP-tagged TG2 accumulated in globular elements (blebs) protruding/retracting from the plasma membrane of primary cortical TECs, and SDC4 knockout impaired bleb formation, affecting TG2 release. Through this combined in vivo and in vitro approach, we have dissected the pathway through which TG2 is secreted from TECs in CKD.
Journal of Biological Chemistry | 2004
Nicholas J. Skill; Timothy S. Johnson; Ian G. C. Coutts; Robert E. Saint; Marie Fisher; Linghong Huang; A. Meguid El Nahas; Russell J. Collighan; Martin Griffin