Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingjiao Zhang is active.

Publication


Featured researches published by Lingjiao Zhang.


Clinical Cancer Research | 2014

Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors

Derek A. Wainwright; Alan L. Chang; Mahua Dey; Irina V. Balyasnikova; Chung Kwon Kim; Alex Tobias; Yu Cheng; Julius W. Kim; Jian Qiao; Lingjiao Zhang; Yu Han; Maciej S. Lesniak

Purpose: Glioblastoma (GBM) is the most common form of malignant glioma in adults. Although protected by both the blood–brain and blood–tumor barriers, GBMs are actively infiltrated by T cells. Previous work has shown that IDO, CTLA-4, and PD-L1 are dominant molecular participants in the suppression of GBM immunity. This includes IDO-mediated regulatory T-cell (Treg; CD4+CD25+FoxP3+) accumulation, the interaction of T-cell–expressed, CTLA-4, with dendritic cell-expressed, CD80, as well as the interaction of tumor- and/or macrophage-expressed, PD-L1, with T-cell–expressed, PD-1. The individual inhibition of each pathway has been shown to increase survival in the context of experimental GBM. However, the impact of simultaneously targeting all three pathways in brain tumors has been left unanswered. Experimental Design and Results: In this report, we demonstrate that, when dually challenged, IDO-deficient tumors provide a selectively competitive survival advantage against IDO-competent tumors. Next, we provide novel observations regarding tryptophan catabolic enzyme expression, before showing that the therapeutic inhibition of IDO, CTLA-4, and PD-L1 in a mouse model of well-established glioma maximally decreases tumor-infiltrating Tregs, coincident with a significant increase in T-cell–mediated long-term survival. In fact, 100% of mice bearing intracranial tumors were long-term survivors following triple combination therapy. The expression and/or frequency of T cell expressed CD44, CTLA-4, PD-1, and IFN-γ depended on timing after immunotherapeutic administration. Conclusions: Collectively, these data provide strong preclinical evidence that combinatorially targeting immunosuppression in malignant glioma is a strategy that has high potential value for future clinical trials in patients with GBM. Clin Cancer Res; 20(20); 5290–301. ©2014 AACR.


Small | 2014

Blood‐Brain Barrier Permeable Gold Nanoparticles: An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging

Yu Cheng; Qing Dai; Ramin A. Morshed; Xiaobing Fan; Michelle L. Wegscheid; Derek A. Wainwright; Yu Han; Lingjiao Zhang; Brenda Auffinger; Alex Tobias; Esther Rincón; Bart Thaci; Atique U. Ahmed; Peter C. Warnke; Chuan He; Maciej S. Lesniak

The blood-brain barrier (BBB) remains a formidable obstacle in medicine, preventing efficient penetration of chemotherapeutic and diagnostic agents to malignant gliomas. Here, a transactivator of transcription (TAT) peptide-modified gold nanoparticle platform (TAT-Au NP) with a 5 nm core size is demonstrated to be capable of crossing the BBB efficiently and delivering cargoes such as the anticancer drug doxorubicin (Dox) and Gd(3+) contrast agents to brain tumor tissues. Treatment of mice bearing intracranial glioma xenografts with pH-sensitive Dox-conjugated TAT-Au NPs via a single intravenous administration leads to significant survival benefit when compared to the free Dox. Furthermore, it is demonstrated that TAT-Au NPs are capable of delivering Gd(3+) chelates for enhanced brain tumor imaging with a prolonged retention time of Gd(3+) when compared to the free Gd(3+) chelates. Collectively, these results show promising applications of the TAT-Au NPs for enhanced malignant brain tumor therapy and non-invasive imaging.


Molecular Pharmaceutics | 2016

Cell-Penetrating Peptide-Modified Gold Nanoparticles for the Delivery of Doxorubicin to Brain Metastatic Breast Cancer

Ramin A. Morshed; Megan E. Muroski; Qing Dai; Michelle L. Wegscheid; Brenda Auffinger; Dou Yu; Yu Han; Lingjiao Zhang; Meijing Wu; Yu Cheng; Maciej S. Lesniak

As therapies continue to increase the lifespan of patients with breast cancer, the incidence of brain metastases has steadily increased, affecting a significant number of patients with metastatic disease. However, a major barrier toward treating these lesions is the inability of therapeutics to penetrate into the central nervous system and accumulate within intracranial tumor sites. In this study, we designed a cell-penetrating gold nanoparticle platform to increase drug delivery to brain metastatic breast cancer cells. TAT peptide-modified gold nanoparticles carrying doxorubicin led to improved cytotoxicity toward two brain metastatic breast cancer cell lines with a decrease in the IC50 of at least 80% compared to free drug. Intravenous administration of these particles led to extensive accumulation of particles throughout diffuse intracranial metastatic microsatellites with cleaved caspase-3 activity corresponding to tumor foci. Furthermore, intratumoral administration of these particles improved survival in an intracranial MDA-MB-231-Br xenograft mouse model. Our results demonstrate the promising application of gold nanoparticles for improving drug delivery in the context of brain metastatic breast cancer.


Cancer Research | 2016

CCL2 Produced by the Glioma Microenvironment Is Essential for the Recruitment of Regulatory T Cells and Myeloid-Derived Suppressor Cells

Alan L. Chang; Jason Miska; Derek A. Wainwright; Mahua Dey; Claudia V. Rivetta; Dou Yu; Deepak Kanojia; Katarzyna C. Pituch; Jian Qiao; Peter Pytel; Yu Han; Meijing Wu; Lingjiao Zhang; Craig Horbinski; Atique U. Ahmed; Maciej S. Lesniak

In many aggressive cancers, such as glioblastoma multiforme, progression is enabled by local immunosuppression driven by the accumulation of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC). However, the mechanistic details of how Tregs and MDSCs are recruited in various tumors are not yet well understood. Here we report that macrophages and microglia within the glioma microenvironment produce CCL2, a chemokine that is critical for recruiting both CCR4+ Treg and CCR2+Ly-6C+ monocytic MDSCs in this disease setting. In murine gliomas, we established novel roles for tumor-derived CCL20 and osteoprotegerin in inducing CCL2 production from macrophages and microglia. Tumors grown in CCL2-deficient mice failed to maximally accrue Tregs and monocytic MDSCs. In mixed-bone marrow chimera assays, we found that CCR4-deficient Treg and CCR2-deficient monocytic MDSCs were defective in glioma accumulation. Furthermore, administration of a small-molecule antagonist of CCR4 improved median survival in the model. In clinical specimens of glioblastoma multiforme, elevated levels of CCL2 expression correlated with reduced overall survival of patients. Finally, we found that CD163-positive infiltrating macrophages were a major source of CCL2 in glioblastoma multiforme patients. Collectively, our findings show how glioma cells influence the tumor microenvironment to recruit potent effectors of immunosuppression that drive progression. Cancer Res; 76(19); 5671-82. ©2016 AACR.


Molecular Therapy | 2014

Intranasal Delivery of Mesenchymal Stem Cells Significantly Extends Survival of Irradiated Mice with Experimental Brain Tumors

Irina V. Balyasnikova; Melanie S. Prasol; Sherise D. Ferguson; Yu Han; Atique U. Ahmed; Margarita Gutova; Alex Tobias; Devkumar Mustafi; Esther Rincón; Lingjiao Zhang; Karen S. Aboody; Maciej S. Lesniak

Treatment options of glioblastoma multiforme are limited due to the blood-brain barrier (BBB). In this study, we investigated the utility of intranasal (IN) delivery as a means of transporting stem cell-based antiglioma therapeutics. We hypothesized that mesenchymal stem cells (MSCs) delivered via nasal application could impart therapeutic efficacy when expressing TNF-related apoptosis-inducing ligand (TRAIL) in a model of human glioma. ¹¹¹In-oxine, histology and magnetic resonance imaging (MRI) were utilized to track MSCs within the brain and associated tumor. We demonstrate that MSCs can penetrate the brain from nasal cavity and infiltrate intracranial glioma xenografts in a mouse model. Furthermore, irradiation of tumor-bearing mice tripled the penetration of (¹¹¹In)-oxine-labeled MSCs in the brain with a fivefold increase in cerebellum. Significant increase in CXCL12 expression was observed in irradiated xenograft tissue, implicating a CXCL12-dependent mechanism of MSCs migration towards irradiated glioma xenografts. Finally, MSCs expressing TRAIL improved the median survival of irradiated mice bearing intracranial U87 glioma xenografts in comparison with nonirradiated and irradiated control mice. Cumulatively, our data suggest that IN delivery of stem cell-based therapeutics is a feasible and highly efficacious treatment modality, allowing for repeated application of modified stem cells to target malignant glioma.


Journal of the National Cancer Institute | 2013

A Preclinical Evaluation of Neural Stem Cell–Based Cell Carrier for Targeted Antiglioma Oncolytic Virotherapy

Atique U. Ahmed; Bart Thaci; Alex Tobias; Brenda Auffinger; Lingjiao Zhang; Yu Cheng; Chung Kwon Kim; Catherine Yunis; Yu Han; Nikita G. Alexiades; Xiaobing Fan; Karen S. Aboody; Maciej S. Lesniak

BACKGROUND Oncolytic adenoviral virotherapy (OV) is a highly promising approach for the treatment of glioblastoma multiforme (GBM). In practice, however, the approach is limited by poor viral distribution and spread throughout the tumor mass. METHODS To enhance viral delivery, replication, and spread, we used a US Food and Drug Administration-approved neural stem cell line (NSC), HB1.F3.CD, which is currently employed in human clinical trials. HB1.F3.CD cells were loaded with an oncolytic adenovirus, CRAd-Survivin-pk7, and mice bearing various human-derived GBMs were assessed with regard to NSC migration, viral replication, and therapeutic efficacy. Survival curves were evaluated with Kaplan-Meier methods. All statistical tests were two-sided. RESULTS Antiglioma activity of OV-loaded HB1.F3.CD cells was effective against clinically relevant human-derived glioma models as well as a glioma stem cell-enriched xenograft model. Median survival was prolonged by 34% to 50% compared with mice treated with OV alone (GBM43FL model median survival = 19.5 days, OV alone vs NSC + OV, hazard ratio of survival = 2.26, 95% confidence interval [CI] = 1.21 to 12.23, P = .02; GBM12 model median survival = 43.5 days, OV alone vs NSC + OV, hazard ratio of survival = 2.53, 95% CI = 1.21 to 10.38, P = .02). OV-loaded HB1.F3.CD cells were shown to effectively migrate to the contralateral hemisphere and hand off the therapeutic payload of OV to targeted glioma cells. In vivo distribution and migratory kinetics of the OV-loaded HB1.F3.CD cells were successfully monitored in real time by magnetic resonance imaging. OV-loaded NSCs retained their differentiation fate and were nontumorigenic in vivo. CONCLUSIONS HB1.F3.CD NSCs loaded with CRAd-Survivin-pk7 overcome major limitations of OV in vivo and warrant translation in a phase I human clinical trial for patients with GBM.


Genetics in Medicine | 2015

Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations

Robert Shenkar; Changbin Shi; Tania Rebeiz; Rebecca A. Stockton; David A. McDonald; Abdul Ghani Mikati; Lingjiao Zhang; Cecilia Austin; Amy Akers; Carol J. Gallione; Autumn Rorrer; Murat Gunel; Wang Min; Jorge Marcondes de Souza; Connie Lee; Douglas A. Marchuk; Issam A. Awad

Purpose:The phenotypic manifestations of cerebral cavernous malformation disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase–mediated hyperpermeability, a potential therapeutic target, has not been established.Methods:We analyzed PDCD10 small interfering RNA–treated endothelial cells for stress fibers, Rho kinase activity, and permeability. Rho kinase activity was assessed in cerebral cavernous malformation lesions. Brain permeability and cerebral cavernous malformation lesion burden were quantified, and clinical manifestations were assessed in prospectively enrolled subjects with PDCD10 mutations.Results:We determined that PDCD10 protein suppresses endothelial stress fibers, Rho kinase activity, and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrated robust Rho kinase activity in murine and human cerebral cavernous malformation vasculature and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared with the more common KRIT1 and CCM2 familial and sporadic cerebral cavernous malformation, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features, including scoliosis, cognitive disability, and skin lesions, unrelated to lesion burden or bleeding.Conclusion:These findings define a unique cerebral cavernous malformation disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling, and the design of trials.Genet Med 17 3, 188–196.


Small | 2013

Nanoparticle‐Programmed Self‐Destructive Neural Stem Cells for Glioblastoma Targeting and Therapy

Yu Cheng; Ramin A. Morshed; Shih Hsun Cheng; Alex Tobias; Brenda Auffinger; Derek A. Wainwright; Lingjiao Zhang; Catherine Yunis; Yu Han; Chin-Tu Chen; Leu Wei Lo; Karen S. Aboody; Atique U. Ahmed; Maciej S. Lesniak

A 3-step glioblastoma-tropic delivery and therapy method using nanoparticle programmed self-destructive neural stem cells (NSCs) is demonstrated in vivo: 1) FDA-approved NSCs for clinical trials are loaded with pH-sensitive MSN-Dox; 2) the nanoparticle conjugates provide a delayed drug-releasing mechanism and allow for NSC migration towards a distant tumor site; 3) NSCs eventually undergo cell death and release impregnated MSN-Dox, which subsequently induces toxicity towards surrounding glioma cells.


Neurosurgery | 2015

Bleeding and infection with external ventricular drainage: a systematic review in comparison with adjudicated adverse events in the ongoing Clot Lysis Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III (CLEAR-III IHV) trial.

Mahua Dey; Agnieszka Stadnik; Fady Riad; Lingjiao Zhang; Nichol McBee; Carlos S. Kase; J. Ricardo Carhuapoma; Malathi Ram; Karen Lane; Noeleen Ostapkovich; Francois Aldrich; Charlene Aldrich; Jack Jallo; Kenneth Butcher; Ryan W Snider; Daniel F. Hanley; Wendy C. Ziai; Issam A. Awad

BACKGROUND Retrospective series report varied rates of bleeding and infection with external ventricular drainage (EVD). There have been no prospective studies of these risks with systematic surveillance, threshold definitions, or independent adjudication. OBJECTIVE To analyze the rate of complications in the ongoing Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III (CLEAR III) trial, providing a comparison with a systematic review of complications of EVD in the literature. METHODS Patients were prospectively enrolled in the CLEAR III trial after placement of an EVD for obstructive intraventricular hemorrhage and randomized to receive recombinant tissue-type plasminogen activator or placebo. We counted any detected new hemorrhage (catheter tract hemorrhage or any other distant hemorrhage) on computed tomography scan within 30 days from the randomization. Meta-analysis of published series of EVD placement was compiled with STATA software. RESULTS Growing or unstable hemorrhage was reported as a cause of exclusion from the trial in 74 of 5707 cases (1.3%) screened for CLEAR III. The first 250 patients enrolled have completed adjudication of adverse events. Forty-two subjects (16.8%) experienced ≥1 new bleeds or expansions, and 6 of 250 subjects (2.4%) suffered symptomatic hemorrhages. Eleven cases (4.4%) had culture-proven bacterial meningitis or ventriculitis. CONCLUSION Risks of bleeding and infection in the ongoing CLEAR III trial are comparable to those previously reported in EVD case series. In the present study, rates of new bleeds and bacterial meningitis/ventriculitis are very low despite multiple daily injections, blood in the ventricles, the use of thrombolysis in half the cases, and generalization to >60 trial sites.


Stem Cells Translational Medicine | 2013

The Timing of Neural Stem Cell-Based Virotherapy Is Critical for Optimal Therapeutic Efficacy When Applied With Radiation and Chemotherapy for the Treatment of Glioblastoma

Alex Tobias; Bart Thaci; Brenda Auffinger; Esther Rincón; Irina V. Balyasnikova; Chung Kwon Kim; Yu Han; Lingjiao Zhang; Karen S. Aboody; Atique U. Ahmed; Maciej S. Lesniak

Glioblastoma multiforme (GBM) remains fatal despite intensive surgical, radiotherapeutic, and chemotherapeutic interventions. Neural stem cells (NSCs) have been used as cellular vehicles for the transportation of oncolytic virus (OV) to therapeutically resistant and infiltrative tumor burdens throughout the brain. The HB1.F3‐CD human NSC line has demonstrated efficacy as a cell carrier for the delivery of a glioma tropic OV CRAd‐Survivin‐pk7 (CRAd‐S‐pk7) in vitro and in animal models of glioma. At this juncture, no study has investigated the effectiveness of OV‐loaded NSCs when applied in conjunction with the standard of care for GBM treatment, and therefore this study was designed to fill this void. Here, we show that CRAd‐S‐pk7‐loaded HB1.F3‐CD cells retain their tumor‐tropic properties and capacity to function as in situ viral manufacturers in the presence of ionizing radiation (XRT) and temozolomide (TMZ). Furthermore, for the first time, we establish a logical experimental model that aims to recapitulate the complex clinical scenario for the treatment of GBM and tests the compatibility of NSCs loaded with OV. We report that applying OV‐loaded NSCs together with XRT and TMZ can increase the median survival of glioma bearing mice by approximately 46%. Most importantly, the timing and order of therapeutic implementation impact therapeutic outcome. When OV‐loaded NSCs are delivered prior to rather than after XRT and TMZ treatment, the median survival of mice bearing patient‐derived GBM43 glioma xenografts is extended by 30%. Together, data from this report support the testing of CRAd‐S‐pk7‐loaded HB1.F3‐CD cells in the clinical setting and argue in favor of a multimodality approach for the treatment of patients with GBM.

Collaboration


Dive into the Lingjiao Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Han

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahua Dey

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge