Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingling Dai is active.

Publication


Featured researches published by Lingling Dai.


Waste Management | 2013

High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.

Xiaohu Dai; Nina Duan; Bin Dong; Lingling Dai

System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model.


Bioresource Technology | 2013

Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge.

Bin Dong; Xiaoguang Liu; Lingling Dai; Xiaohu Dai

The sequential extraction procedure developed by Tessier et al. was used in sludge anaerobic digestion to determine the heavy metal speciation. Sludge samples were taken every three days to investigate humic substances, VS/TS, pH, VFA, alkalinity, ammonia, the total content of Zn, Pb, Cu, Ni, and Cr, and also their distribution into EXCH, CARB, FeMnOx, OMB and RESI fractions. Results showed that, (1) Heavy metals were concentrated during the anaerobic digestion process. The concentration of all five kinds of heavy metals increased by about 50%. (2) The distribution of these heavy metals differed. (3) High-solid anaerobic digestion much or less increased the bioavailability of Cu, Zn, Ni and Cr while decreased the bioavailability of Pb. (4) There were significant degrees of correlation between heavy metal fractions and changes of some selected parameters (for example, pH, VS/TS, and VFA content). Except for Pb, the contents of total mobile fractions for Cu, Zn, Ni, Cr could be predictable from its total content.


Bioresource Technology | 2014

New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy.

Xiaowei Li; Xiaohu Dai; Junichi Takahashi; Ning Li; Jingwei Jin; Lingling Dai; Bin Dong

Dissolved organic matter (DOM) is a key component in reaction network of anaerobic digestion. In this study, fluorescent excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis and two-dimensional (2D) FTIR correlation spectroscopy were firstly used to explore chemical changes of soluble intermediates in high-solid biogas reactor. EEM-PARAFAC showed that fluorescent components (tyrosine-like, tryptophan-like and humic-like groups) in DOM over time increased gradually, implying that these groups were reluctant to biodegrade (acidogenesis). The resistance to biodegradation presented the following order: humic-like group>tyrosine-like group>tryptophan-like group. 2D FTIR correlation spectroscopy indicated that the DOM change sequence with time followed the order: protein-like groups>structural carbohydrates and carboxylic acids>polysaccharides-like groups. Fluorescence intensities from EEM-PARAFAC and main bands of FTIR spectra correlated significantly with other chemical parameters, e.g. biogas production and dissolved organic carbon content. These findings supply novel realization for degradation degree and order of individual DOMs during anaerobic digestion for dewatered sewage sludge.


Bioresource Technology | 2016

Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

Xiaohu Dai; Xiaoshuai Li; Dong Zhang; Yinguang Chen; Lingling Dai

It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion.


Scientific Reports | 2016

Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

Tao Wang; Dong Zhang; Lingling Dai; Yinguang Chen; Xiaohu Dai

Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.


Bioresource Technology | 2017

Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion

Xiaohu Dai; Chongliang Hu; Dong Zhang; Lingling Dai; Nina Duan

A novel strategy for acclimation to ammonia stress was implemented by stimulating a high ammonia-ammonium-pH environment in a high-solid anaerobic digestion (AD) system in this study. Three semi-continuously stirred anaerobic reactors performed well over the whole study period under mesophilic conditions, especially in experimental group (R-2) when accommodated from acclimation period which the maximum total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) increased to 4921 and 2996mg/L, respectively. Moreover, when it accommodated the high ammonia-ammonium-pH system, the daily biogas production and methane content were similar to those in R-1 (the blank control to R-2), but the hydrogen sulfide (H2S) content lower than the blank control. Moreover, mechanistic studies showed that high ammonia stress enhanced the activity of coenzyme F420. The results of real-time fluorescent quantitative polymerase chain reaction (PCR) showed that ammonia stress decreased the abundance of sulfate-reducing bacteria and increased the abundance of methane-producing archaea.


Scientific Reports | 2016

Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge

Xiaohu Dai; Han Yan; Ning Li; Jin He; Yueling Ding; Lingling Dai; Bin Dong

A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40–55) to 21.3 ± 1.5% in the last period (day 71–110) when ammonium concentration was elevated to be within 5,000–6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial ‘ammonium inhibition’.


Scientific Reports | 2015

Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

Xiaohu Dai; Fan Luo; Dong Zhang; Lingling Dai; Yinguang Chen; Bin Dong

During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM.


RSC Advances | 2015

Two-dimensional FTIR correlation spectroscopy reveals chemical changes in dissolved organic matter during the biodrying process of raw sludge and anaerobically digested sludge

Xiaowei Li; Xiaohu Dai; Lingling Dai; Zhigang Liu

Chemical changes in dissolved organic matter (DOM) during the biodrying of raw sludge (RS) and anaerobically digested sludge (ADS) were analyzed by various techniques, e.g., two-dimensional FTIR correlation spectroscopy (2D FTIR COS). The results showed that the RS and ADS matrices achieved the desired biodrying performance after 18 days. Biodrying caused a decrease in the dissolved organic carbon content and an increase in the molecular weight, aromaticity, and fluorescent intensity of DOM in the sludge matrices. Compared with the RS matrix, the organic matter of the ADS was more biostable, resulting in a lower biodrying performance. The asynchronous map of 2D FTIR COS analysis showed the changes in the heteropolysaccharide first, followed by the protein-like groups in the matrices during the biodrying process, which was contrary to the previous results from anaerobic digestion. They supply the first evidence for the complementarities of anaerobic and aerobic processes in sludge organic compound degradation. 2D FTIR COS analysis is a feasible technique to explore the degradation characteristics of individual organic matters during the sludge treatment.


Journal of Hazardous Materials | 2018

New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways

Sisi Chen; Ning Li; Bin Dong; Wentao Zhao; Lingling Dai; Xiaohu Dai

Two lab-scale high solid anaerobic digesters fed with untreated sludge (R1) and thermally hydrolyzed sludge (R2) were operated to investigate the influence of thermal hydrolysis pretreatment (THP) on the degradation of individual macromolecular organic components (MOCs), as well as the functional and metabolic responses of microbes during anaerobic digestion (AD). The degradation of MOCs was improved by THP at different rates, in which improved degradation of proteins (by 49.0%) and hemicelluloses (by 25.0%) were the main factors contributing to the increase in volatile solids (VS) reduction. However, no enhancement of final degradation extent of MOCs was observed. With a more densified microbial population, R2 was also enriched in genes involved in amino acid and carbohydrate metabolism, reflected in the enhanced degradation of proteins and carbohydrates. After THP, the methanogenic pathway shifted from strict acetoclastic methanogenesis to acetoclastic/hydrogenotrophic methanogenesis, consistent with the enhanced methane production and the increase of methane content.

Collaboration


Dive into the Lingling Dai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junichi Takahashi

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge