Lingyan Wang
Fudan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lingyan Wang.
Journal of Translational Medicine | 2015
Yu Gu; Tianxiang Chen; Suzhen Fu; Xin Sun; Lingyan Wang; Jian Wang; Yingfeng Lu; Songming Ding; Guodong Ruan; Lisong Teng; Min Wang
BackgroundMetabolome analysis including amino acid profile is under investigation as an approach in cancer screening. The present study aims to analyze plasma free amino acid (PFAA) profiles in cancer patients and investigate their potential as biomarkers of malignancy.MethodsPlasma samples from 56 gastric cancer patients, 28 breast cancer patients, 33 thyroid cancer patients, and 137 age-matched healthy controls were collected in the study. PFAA levels were measured and their perioperative alterations were analyzed. Biological effects of ten cancer-related amino acids were further validated in gastric and breast cancer cells.ResultsWe found that PFAA profiles of cancer patients differed significantly from those of healthy controls. Decreased concentrations of PFAAs were associated with lymph node metastases in gastric cancer. Levels of PFAAs such as aspartate and alanine increased after tumor resection. PFAA levels correlated with clinical tumor markers in gastric cancer patients and pathological immunohistochemistry markers in breast cancer patients. Specifically, alanine, arginine, aspartate and cysteine had proliferative effects on breast cancer cells. Proliferation of gastric cancer cells was promoted by cysteine, but inhibited by alanine and glutamic acid. Furthermore, alanine treatment decreased total and stable fraction of gastric cancer cells, and alanine and glutamic acid induced apoptosis of gastric cancer cells.ConclusionsPFAA patterns in cancer patients are altered perioperatively. Tumor-related amino acids identified by dynamic study of PFAA patterns may have the potential to be developed as novel biomarkers for diagnosis and prognosis of cancer patients.
Cancer and Metastasis Reviews | 2015
Lin Shi; Lingyan Wang; Jiayan Hou; Bijun Zhu; Zhihui Min; Miaomiao Zhang; Dongli Song; Yunfeng Cheng; Xiangdong Wang
Inflammatory cells and mediators are essential components in tumor microenvironment and play decisive roles in the initiation, proliferation, survival, promotion, invasion, or metastasis of lung cancer. Clinical and epidemiologic studies suggested a strong association between inflammation and lung cancer and an influence of immune surveillances and tumor responses to chemotherapeutic drugs, although roles of inflammation in lung cancer remain unclear. The present review outlined roles of inflammation in lung cancer, with particular focus on inflammatory components, types, biomarkers, or principal mechanisms by which the inflammation contributes to the development of lung cancer. The cancer-associated inflammatory cells (CICs) should be furthermore defined and include cancer-specific and interacted cells with inflammatory or inflammation-like characteristics, e.g., innate or adaptive immune cells and cancer tissue cells. We also discuss targeting potentials of inflammation in the prevention and treatment of lung cancer. The diversity of cancer-related inflammatory microenvironment is instrumental to design novel therapeutic approaches for lung cancer.
Journal of Translational Medicine | 2014
Lin Shi; Lingyan Wang; Bingxing Wang; Sanda Maria Cretoiu; Qun Wang; Xiangdong Wang; Chengshui Chen
BackgroundBetacellulin (BTC), a member of the epidermal growth factor (EGF) family, binds and activates ErbB1 and ErbB4 homodimers. BTC was expressed in tumors and involved in tumor growth progression. CXCL8 (interleukin-8) was involved in tumor cell proliferation via the transactivation of the epidermal growth factor receptor (EGFR).Materials and methodsThe present study was designed to investigate the possible interrelation between BTC and CXCL8 in human lung cancer cells (A549) and demonstrated the mechanisms of intracellular signals in the regulation of both functions. Bio-behaviors of A549 were assessed using Cell-IQ Alive Image Monitoring System.ResultsWe found that BTC significantly increased the production of CXCL8 through the activation of the EGFR-PI3K/Akt-Erk signal pathway. BTC induced the resistance of human lung cancer cells to TNF-α/CHX-induced apoptosis. Treatments with PI3K inhibitors, Erk1/2 inhibitor, or Erlotinib significantly inhibited BTC-induced CXCL8 production and cell proliferation and movement.ConclusionOur data indicated that CXCL8 production from lung cancer cells could be initiated by an autocrine mechanism or external sources of BTC through the EGFR–PI3K–Akt–Erk pathway to the formation of inflammatory microenvironment. BTC may act as a potential target to monitor and improve the development of lung cancer inflammation.
Journal of Cancer | 2014
Zhihui Min; Lingyan Wang; Jianjun Jin; Xiangdong Wang; Bijun Zhu; Hao Chen; Yunfeng Cheng
Pyrroloquinoline quinone (PQQ) has been reported as a promising agent that might contribute to tumor cell apoptosis and death, yet little is known on its mechanisms. In current study, the effect of PQQ on cell proliferation and mitochondrial-dependent apoptosis were examined in 3 solid tumor cell lines (A549, Neuro-2A and HCC-LM3). PQQ treatment at low to medium dosage exhibited potent anti-tumor activity on A549 and Neuro-2A cells, while had comparably minimal impact on the viabilities of 2 human normal cell lines (HRPTEpiC and HUVEC). The apoptosis of the 3 tumor cell lines induced by PQQ were increased in a concentration-dependent manner, which might be attributed to the accumulation of intracellular reactive oxygen species (ROS), decline in ATP levels and dissipation of mitochondrial membrane potential (MMP), in conjunction with down-regulation of Bcl-2 protein expression, up-regulation of activated caspase-3, and disturbed phosphorylated MAPK protein levels. PQQ induced tumor cells apoptosis was significantly alleviated by pan-caspase inhibitor Z-VAD-FMK. The present work highlights the potential capability of PQQ as an anti-tumor agent with low toxicity towards normal cells through activating mitochondrial-dependent apoptosis pathways, and warrants its development for cancer therapy.
Experimental Biology and Medicine | 2014
Zitong Zhao; Cheng Yang; Lingyan Wang; Long Li; Tian Zhao; Linkun Hu; Ruiming Rong; Ming Xu; Tongyu Zhu
Acute rejection (AR) hinders renal allograft survival. Tubular epithelial cell (TEC) apoptosis contributes to premature graft loss in AR, while the mechanism remains unclear. Soluble fibrinogen-like protein 2 (sFGL2), a novel effector of regulatory T cells (Treg), induces apoptosis to mediate tissue injury. We previously found that serum sFGL2 significantly increased in renal allograft rejection patients. In this study, the role of sFGL2 in AR was further investigated both in vivo and in vitro. The serum level of sFGL2 and the percentage of CD4+CD25+Foxp3+ Treg in the peripheral blood were measured in renal allograft recipients with AR or stable renal function (n = 30 per group). The human TEC was stimulated with sFGL2, tumor necrosis factor (TNF)-α, or phosphate buffered saline and investigated for apoptosis in vitro. Apoptosis-associated genes expression in TEC was further assessed. Approval for this study was obtained from the Ethics Committee of Fudan University. Our results showed that the serum level of sFGL2, correlated with Treg in the peripheral blood, was significantly increased in the AR patients. In vitro, sFGL2 remarkably induced TEC apoptosis, with a significant up-regulation of proapoptotic genes, including CASP-3, CASP-8, CASP-9, CASP-10, TRADD, TNFSF10, FADD, FAS, FASLG, BAK1, BAD, BAX, and NF-KB1. However, no significant changes were observed in the expression of antiapoptotic genes, including CARD-18, NAIP, BCL2, IKBKB, and TBK1. Therefore, sFGL2, an effector of Treg, induces TEC apoptosis. Our study suggests that sFGL2 is a potential mediator in the pathogenesis of allograft rejection and provides novel insights into the role of Treg in AR.
Journal of Surgical Research | 2013
Zitong Zhao; Lingyan Wang; Cheng Yang; Tian Zhao; Long Li; Linkun Hu; Duojiao Wu; Ruiming Rong; Ming Xu; Tongyu Zhu
BACKGROUND Acute rejection (AR), initiated by alloreactive CD4(+) T cells, hampers allograft survival. Soluble fibrinogen-like protein 2 (sFGL2) is a novel effector of CD4(+) T cells. We previously found that serum sFGL2 significantly increased in renal allograft recipients with AR. In this study, sFGL2 secretion by CD4(+) T cells and its mechanism were further explored both in vivo and in vitro. MATERIALS AND METHODS Forty cases of living-related renal transplant recipients with biopsy-proven AR or stable renal function were collected and detected serum sFGL2, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, and peripheral CD4(+) T cells. In vitro, the isolated human CD4(+) T cells were stimulated by TNF-α or IFN-γ. sFGL2 in the supernatant and mitogen-activated protein kinase (MAPK) proteins in the CD4(+) T cells were investigated. Approval for this study was obtained from the Ethics Committee of Fudan University. RESULTS sFGL2, TNF-α, IFN-γ, and CD4(+) T cells were significantly increased in the peripheral blood of renal allograft recipients with AR. Stimulation with 1000 U/mL TNF-α or 62.5 U/mL IFN-γ for 48 h provided an optimal condition for CD4(+) T cells to secrete sFGL2 in vitro. Phosphorylated (p-) c-Jun N-terminal kinase was remarkably upregulated in the activated CD4(+) T cells, whereas no significant changes were found in p-p38 MAPK or p-ERK1/2 expression. Furthermore, inhibition of c-Jun N-terminal kinase significantly reduced sFGL2 secretion by CD4(+) T cells. CONCLUSIONS sFGL2 secretion by CD4(+) T cells can be induced with TNF-α and IFN-γ stimulation through MAPK signaling in renal allograft AR. Our study suggests that sFGL2 is a potential mediator in the pathogenesis of allograft rejection.
Seminars in Cell & Developmental Biology | 2017
William Wang; Jiapei Lv; Lingyan Wang; Xiangdong Wang; Ling Ye
Phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) plays a crucial role in the initiation and progress of cancerous tumors through the overexpression of the PI3K pathway promoting uncontrollable levels of cell proliferation. In addition only Class I PI3K has been discovered to be involved in human cancer due to its unique ability to produce phosphoinositide 3,4,5 trisphosphate (PIP3), which has been discovered to play a crucial role in human oncogenesis. The role of PIK3CA is lucubrated in breast cancer and gastric cancer, but is not well characterized in lung diseases. In this review, we summarized the common biology and mutations in PIK3CA with its related signaling pathways. Furthermore, we elucidated the PIK3CA heterogeneity in different domains, between various cancers and in different lung cancers. We also take a look at current inhibitors such as KP-372-1 (KP-1), KP-372-2 (KP-2), GSK690693, etc. in order to highlight potential treatment of PIK3CA mutations in human cancer and what directions future research should focus on.
Transplantation | 2014
Lingyan Wang; Cheng Yang; Ming Xu; Mushuang Hu; Xiangdong Wang; Tongyu Zhu
Soluble fibrinogen-like protein 2 (sFGL2) is the soluble form of fibrinogen like protein 2. As a novel immunoregulatory molecule, sFGL2 is secreted mainly by T cells, especially regulatory T cells, and exerts an immunoregulatory property rather than a prothrombinase function in the immune system. sFGL2 changes not only the proliferation and differentiation of T cells but also the maturation of antigen presenting cells. Besides its innate and adaptive immunoregulatory functions, sFGL2 also induces apoptosis in cells including renal tubular epithelial cells through Fcγ receptors (FcγRs). It may affect transplantation via regulation of immunity and induction of apoptosis of different cells in a spatiotemporal manner. Here, we review the research progresses on sFGL2 including its structure, functions, and molecular mechanisms via which sFGL2 might affect organ transplantation, as well as discuss its characteristics and potential of becoming a therapeutic target in patients with rejection.
Oncotarget | 2017
Mingyan He; Jiayun Hou; Lingyan Wang; Minghuan Zheng; Tingting Fang; Xiangdong Wang; Jinglin Xia
Actinidia chinensis Planch root extract (acRoots) is a traditional Chinese medicine with anti-tumor efficacy. To investigate the mechanisms responsible for this activity, we examined the effects of acRoots on cholesterol metabolism in hepatocellular carcinoma (HCC). mRNA chip analysis was used to identify the metabolic genes regulated by acRoots. The effects of acRoots on cholesterol synthesis and uptake were evaluated by measuring intracellular cholesterol levels and 3,3′-dioctadecylindocarbocyanine-labeled low-density lipoprotein (Dil-LDL) uptake. Expression of metabolic genes was analyzed using quantitative reverse transcription PCR, western blotting, and flow cytometry. acRoots reduced the viability of LM3 and HepG2 cells at 5 mg/mL and HL-7702 cells at 30 mg/mL. Gene expression profiling revealed that treatment with acRoots altered expression of genes involved in immune responses, inflammation, proliferation, cell cycle control, and metabolism. We also confirmed that acRoots enhances expression of PCSK9, which is important for cholesterol metabolism. This resulted in decreased LDL receptor expression, inhibition of LDL uptake by LM3 cells, decreased total intracellular cholesterol, and reduced proliferation. These effects were promoted by PCSK9 overexpression and rescued by PCSK9 knockdown. Our data demonstrate that acRoots is a novel anti-tumor agent that inhibits cholesterol metabolism though a PCSK9-mediated signaling pathway.
Oncology Letters | 2018
Lingyan Wang; Zhihui Min; Xiangdong Wang; Mushuang Hu; Dongli Song; Zheng-Gang Ren; Yunfeng Cheng; Yanhong Wang
The survival benefits of sorafenib treatment for patients with hepatocellular carcinoma (HCC) are limited due to drug resistance and side effects. Therefore, combinations of sorafenib with other low toxicity drugs, including arsenic trioxide (As2O3) require investigation. The present study aimed to evaluate the potency of apoptosis-induction by As2O3/sorafenib treatment in HCC cell lines, Huh7, 97H and freshly-isolated HCC cells, and also to elucidate the underlying mechanism. A total of 10 patients with HCC were enrolled in the present study. Freshly-isolated HCC cells were purified from HCC tissues collected at surgery. HCC-cell apoptosis was measured by flow cytometry using proprium iodide/Annexin-V staining. The impacts of As2O3 and/or sorafenib on Huh7, 97H and fresh-isolated HCC-cell proliferation were evaluated by Cell Counting Kit-8 assay. The expression of TNF-related apoptosis-inducing ligand (TRAIL) was determined by reverse transcription-quantitative polymerase chain reaction and western blotting. The downregulation of TRAIL protein expression was achieved using small interfering RNA. The combination of As2O3 and sorafenib had anti-proliferative and pro-apoptotic effects in the liver cancer cell line, Huh7, via increased expression of TRAIL, but not in 97H cells. TRAIL-knockdown increased the drug-resistance of Huh7 cells. Freshly-isolated HCC cells were more sensitive to the As2O3 and sorafenib combination than the single drug treatments. Overall, the combination of As2O3 and sorafenib demonstrated potent anti-tumor activity in Huh7 and freshly-isolated HCC cells via a TRAIL-dependent pathway. This may be a potential therapeutic approach for advanced HCC treatment.