Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linjuan Zhang is active.

Publication


Featured researches published by Linjuan Zhang.


Nature | 2013

Chemical mapping of a single molecule by plasmon-enhanced Raman scattering

Ruiqi Zhang; Yang Zhang; Zhenchao Dong; Shou-Zhen Jiang; Cunlin Zhang; L. G. Chen; Linjuan Zhang; Yiliang Liao; Javier Aizpurua; Yi Luo; Jinlong Yang; Jianguo Hou

Visualizing individual molecules with chemical recognition is a longstanding target in catalysis, molecular nanotechnology and biotechnology. Molecular vibrations provide a valuable ‘fingerprint’ for such identification. Vibrational spectroscopy based on tip-enhanced Raman scattering allows us to access the spectral signals of molecular species very efficiently via the strong localized plasmonic fields produced at the tip apex. However, the best spatial resolution of the tip-enhanced Raman scattering imaging is still limited to 3−15 nanometres, which is not adequate for resolving a single molecule chemically. Here we demonstrate Raman spectral imaging with spatial resolution below one nanometre, resolving the inner structure and surface configuration of a single molecule. This is achieved by spectrally matching the resonance of the nanocavity plasmon to the molecular vibronic transitions, particularly the downward transition responsible for the emission of Raman photons. This matching is made possible by the extremely precise tuning capability provided by scanning tunnelling microscopy. Experimental evidence suggests that the highly confined and broadband nature of the nanocavity plasmon field in the tunnelling gap is essential for ultrahigh-resolution imaging through the generation of an efficient double-resonance enhancement for both Raman excitation and Raman emission. Our technique not only allows for chemical imaging at the single-molecule level, but also offers a new way to study the optical processes and photochemistry of a single molecule.


Nature Communications | 2017

Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

Tao Zheng; Zaixing Yang; Daxiang Gui; Zhiyong Liu; Xiangxiang Wang; Xing Dai; Shengtang Liu; Linjuan Zhang; Yang Gao; Lanhua Chen; Daopeng Sheng; Yanlong Wang; Juan Diwu; Jianqiang Wang; Ruhong Zhou; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang

Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.


Environmental Science & Technology | 2017

Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal–Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation

Wei Liu; Xing Dai; Zhuanling Bai; Yanlong Wang; Zaixing Yang; Linjuan Zhang; Lin Xu; Lanhua Chen; Yuxiang Li; Daxiang Gui; Juan Diwu; Jianqiang Wang; Ruhong Zhou; Zhifang Chai; Shuao Wang

Uranium is not only a strategic resource for the nuclear industry but also a global contaminant with high toxicity. Although several strategies have been established for detecting uranyl ions in water, searching for new uranium sensor material with great sensitivity, selectivity, and stability remains a challenge. We introduce here a hydrolytically stable mesoporous terbium(III)-based MOF material compound 1, whose channels are as large as 27 Å × 23 Å and are equipped with abundant exposed Lewis basic sites, the luminescence intensity of which can be efficiently and selectively quenched by uranyl ions. The detection limit in deionized water reaches 0.9 μg/L, far below the maximum contamination standard of 30 μg/L in drinking water defined by the United States Environmental Protection Agency, making compound 1 currently the only MOF material that can achieve this goal. More importantly, this material exhibits great capability in detecting uranyl ions in natural water systems such as lake water and seawater with pH being adjusted to 4, where huge excesses of competing ions are present. The uranyl detection limits in Dushu Lake water and in seawater were calculated to be 14.0 and 3.5 μg/L, respectively. This great detection capability originates from the selective binding of uranyl ions onto the Lewis basic sites of the MOF material, as demonstrated by synchrotron radiation extended X-ray adsorption fine structure, X-ray adsorption near edge structure, and first principles calculations, further leading to an effective energy transfer between the uranyl ions and the MOF skeleton.


Nuclear Fusion | 2013

First observations of ELM triggering by injected lithium granules in EAST

D.K. Mansfield; A.L. Roquemore; T. Carroll; Z. Sun; J.S. Hu; Linjuan Zhang; Y. Liang; X.Z. Gong; J.G. Li; H.Y. Guo; G.Z. Zuo; P.B. Parks; W. Wu; R. Maingi

The first results of edge-localized mode (ELM) pacing using small spherical lithium granules injected mechanically into H-mode discharges are reported. Triggering of ELMs was accomplished using a simple rotating impeller to inject sub-millimetre size granules at speeds of a few tens of meters per second into the outer midplane of the EAST fusion device. During the injection phase, ELMs were triggered with near 100% efficiency and the amplitude of the induced ELMs as measured by Dα was clearly reduced compared to contemporaneous naturally occurring ELMs. In addition, a wide range of granule penetration depths was observed. Moreover, a substantial fraction of the injected granules appeared to penetrate up to 50% deeper than the 3 cm nominal EAST H-mode pedestal width. The observed granule penetration was, however, less deep than suggested by ablation modelling carried out after the experiment. The observation that ELMs can be triggered using the injection of something other than frozen hydrogenic pellets allows for the contemplation of lithium or beryllium-based ELM pace-making on future fusion devices. This change in triggering paradigm would allow for the decoupling of the ELM-triggering process from the plasma-fuelling process which is currently a limitation on the performance of hydrogen-based ELM mitigation by injected pellets.


Environmental Science & Technology | 2016

Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides

Lin Xu; Tao Zheng; Shitong Yang; Linjuan Zhang; Jianqiang Wang; Wei Liu; Lanhua Chen; Juan Diwu; Zhifang Chai; Shuao Wang

The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical modeling, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB backfill material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency.


Nuclear Fusion | 2014

Approaches towards long-pulse divertor operations on EAST by active control of plasma–wall interactions

H.Y. Guo; Jiangang Li; X.Z. Gong; Baonian Wan; J.S. Hu; Lianzhou Wang; H. Q. Wang; J. Menard; M.A. Jaworski; Kaifu Gan; Shaojin Liu; Guosheng Xu; S. Ding; Liqun Hu; Y. Liang; J.B. Liu; Guang-Nan Luo; H. Si; D.S. Wang; Zhiwei Wu; L.Y. Xiang; B.J. Xiao; Linjuan Zhang; X.L. Zou; D. L. Hillis; A. Loarte; R. Maingi

The Experimental Advanced Superconducting Tokamak (EAST) has demonstrated, for the first time, long-pulse divertor plasmas over 400 s, entirely driven by lower hybrid current drive (LHCD), and further extended high-confinement plasmas, i.e. H-modes, over 30 s with predominantly LHCD and advanced lithium wall conditioning. Many new and exciting physics results have been obtained in the quest for long-pulse operations. The key findings are as follows: (1) access to H-modes in EAST favours the divertor configuration with the ion ∇B drift directed away from the dominant X-point; (2) divertor asymmetry during edge-localized modes (ELMs) also appears to be dependent on the toroidal field direction, with preferential particle flow opposite to the ion ∇B drift; (3) LHCD induces a striated heat flux (SHF), enhancing heat deposition away from the strike point, and the degree of SHF can be modified by supersonic molecule beam injection; (4) the long-pulse H-modes in EAST exhibit a confinement quality between type-I and type-III ELMy H-modes, with H98(y,2) ~ 0.9, similar to type-II ELMy H-modes.


Nuclear Fusion | 2013

First results from H-mode plasmas generated by ICRF heating in the EAST

Xiaotao Zhang; Yanping Zhao; Bo Wan; X.Z. Gong; J.G. Li; Y. Lin; C.M. Qin; G. Taylor; Gang Xu; Y. W. Sun; B.X. Gao; J. Qian; F.D. Wang; B. Lu; C. Luo; Linjuan Zhang; Liqun Hu; Yong Song; C. X. Yu; W. D. Liu; S.J. Wukitch; J. R. Wilson; J. C. Hosea

Deuterium high-confinement (H-mode) plasmas, lasting up to 3.45 s, have been generated in the EAST by ion cyclotron range of frequency (ICRF) heating. H-mode access was achieved by coating the molybdenum-tiled first wall with lithium to reduce the hydrogen recycling from the wall. H-mode plasmas with plasma currents between 0.4 and 0.6 MA and axial toroidal magnetic fields between 1.85 and 1.95 T were generated by 27 MHz ICRF heating of deuterium plasma with hydrogen minority. The ICRF input power required to access the H-mode was 1.6–1.8 MW. The line-averaged density was in the range (1.83–2.3) × 1019 m−3. 200–500 Hz type-III edge localized mode activity was observed during the H-mode phase. The H-mode confinement factor, H98IPB(y, 2), was ~0.7.


Nuclear Fusion | 2012

Particle and power deposition on divertor targets in EAST H-mode plasmas

Lianzhou Wang; Guosheng Xu; H.Y. Guo; R. Chen; S. Ding; Kaifu Gan; X. Gao; X.Z. Gong; M. Jiang; Pengfei Liu; Songlin Liu; Guang-Nan Luo; Tingfeng Ming; B.N. Wan; D.S. Wang; F.M. Wang; H. Q. Wang; Zhiwei Wu; N. Yan; Linjuan Zhang; W. Zhang; Xiaotao Zhang; Sizheng Zhu

The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons were made between the H-mode plasmas with lower hybrid current drive (LHCD) and those with combined ion cyclotron resonance heating (ICRH). The particle and heat flux profiles between and during ELMs were obtained from Langmuir triple-probe arrays embedded in the divertor target plates. And isolated ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM-free period. It was demonstrated that ELM-induced radial transport predominantly originated from the low-field side region, in good agreement with the ballooning-like transport model and experimental results of other tokamaks. ELMs significantly enhanced the divertor particle and heat fluxes, without significantly broadening the SOL width and plasma-wetted area on the divertor target in both LHCD and LHCD + ICRH H-modes, thus posing a great challenge for the next-step high-power, long-pulse operation in EAST. Increasing the divertor-wetted area was also observed to reduce the peak heat flux and particle recycling at the divertor target, hence facilitating long-pulse H-mode operation. The particle and heat flux profiles during ELMs appeared to exhibit multiple peak structures, and were analysed in terms of the behaviour of ELM filaments and the flux tubes induced by modified magnetic topology during ELMs.


Environmental Science & Technology | 2017

Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation

Lin Zhu; Linjuan Zhang; Jie Li; Duo Zhang; Lanhua Chen; Daopeng Sheng; Shitong Yang; Chengliang Xiao; Jianqiang Wang; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang

Selenium is of great concern owing to its acutely toxic characteristic at elevated dosage and the long-term radiotoxicity of 79Se. The contents of selenium in industrial wastewater, agricultural runoff, and drinking water have to be constrained to a value of 50 μg/L as the maximum concentration limit. We reported here the selenium uptake using a structurally well-defined cationic layered rare earth hydroxide, Y2(OH)5Cl·1.5H2O. The sorption kinetics, isotherms, selectivity, and desorption of selenite and selenate on Y2(OH)5Cl·1.5H2O at pH 7 and 8.5 were systematically investigated using a batch method. The maximum sorption capacities of selenite and selenate are 207 and 124 mg/g, respectively, both representing the new records among those of inorganic sorbents. In the low concentration region, Y2(OH)5Cl·1.5H2O is able to almost completely remove selenium from aqueous solution even in the presence of competitive anions such as NO3-, Cl-, CO32-, SO42-, and HPO42-. The resulting concentration of selenium is below 10 μg/L, well meeting the strictest criterion for the drinking water. The selenate on loaded samples could be desorbed by rinsing with concentrated noncomplexing NaCl solutions whereas complexing ligands have to be employed to elute selenite for the material regeneration. After desorption, Y2(OH)5Cl·1.5H2O could be reused to remove selenate and selenite. In addition, the sorption mechanism was unraveled by the combination of EDS, FT-IR, Raman, PXRD, and EXAFS techniques. Specifically, the selenate ions were exchanged with chloride ions in the interlayer space, forming outer-sphere complexes. In comparison, besides anion exchange mechanism, the selenite ions were directly bound to the Y3+ center in the positively charged layer of [Y2(OH)5(H2O)]+ through strong bidentate binuclear inner-sphere complexation, consistent with the observation of the higher uptake of selenite over selenate. The results presented in this work confirm that the cationic layered rare earth hydroxide is an emerging and promising material for efficient removal of selenite and selenate as well as other anionic environmental pollutants.


ACS Applied Materials & Interfaces | 2017

Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework

Long Chen; Zhuanling Bai; Lin Zhu; Linjuan Zhang; Yawen Cai; Yuxiang Li; Wei Liu; Yanlong Wang; Lanhua Chen; Juan Diwu; Jianqiang Wang; Zhifang Chai; Shuao Wang

Enrichment of uranyl from seawater is crucial for the sustainable development of nuclear energy, but current uranium extraction technology suffers from multiple drawbacks of low sorption efficiency, slow uptake kinetics, or poor extraction selectivity. Herein, we prepared the first example of amidoxime appended metal-organic framework UiO-66-AO by a postsynthetic modification method for rapid and efficient extraction of uranium from seawater. UiO-66-AO can remove 94.8% of uranyl ion from Bohai seawater within 120 min and 99% of uranyl ion from Bohai seawater containing extra 500 ppb uranium within 10 min. The uranyl sorption capacity in a real seawater sample was determined to be 2.68 mg/g. In addition, the recyclability of the UiO-66-AO framework was demonstrated for at least three adsorption/desorption cycles. The origin for the superior sorption capability was further probed by extended X-ray absorption fine structure (EXAFS) analysis on the uranium-sorbed sample, suggesting multiple amidoxime ligands are able to chelate uranyl(VI) ions, forming a hexagonal bipyramid coordination geometry.

Collaboration


Dive into the Linjuan Zhang's collaboration.

Top Co-Authors

Avatar

Jianqiang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiong Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuo Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ziyu Wu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

J.G. Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhifang Chai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jie Cheng

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Wangsheng Chu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge