Linlin Dong
Peking Union Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linlin Dong.
Gene | 2014
Yunyun Niu; Hongmei Luo; Chao Sun; Tae-Jin Yang; Linlin Dong; Linfang Huang; Shilin Chen
Panax notoginseng (Burk) F. H. Chen, an economically significant medicinal plant with hemostatic and health tonic activities, has been used in Traditional Chinese Medicine (TCM) for more than 3,000 years. Triterpene saponins are responsible for most of the pharmacological activities of P. notoginseng. Here, we cloned five cDNA sequences encoding the key enzymes involved in triterpene saponin biosynthesis, namely, PnFPS, PnSS, PnSE1, PnSE2, and PnDS, and analyzed the conserved domains and phylogenetics of their corresponding proteins. Their organ-specific expression patterns in four-year-old P. notoginseng were detected by real-time PCR, showing that they were all most highly expressed in flowers. In addition, four of the genes, excluding PnSE2, were upregulated in leaves following stimulation with methyl jasmonate. This study is the first comprehensive analysis of the expression patterns of pivotal genes for triterpene saponin biosynthesis in P. notoginseng and provides a basis to further elucidate the molecular mechanism for the biosynthesis of these medically important compounds.
Scientific Reports | 2016
Linlin Dong; Jiang Xu; Guangquan Feng; Xiwen Li; Shilin Chen
Notoginseng (Panax notoginseng), a valuable herbal medicine, has high death rates in continuous cropping systems. Variation in the soil microbial community is considered the primary cause of notoginseng mortality, although the taxa responsible for crop failure remains unidentified. This study used high-throughput sequencing methods to characterize changes in the microbial community and screen microbial taxa related to the death rate. Fungal diversity significantly decreased in soils cropped with notoginseng for three years. The death rate and the fungal diversity were significantly negatively correlated, suggesting that fungal diversity might be a potential bioindicator of soil health. Positive correlation coefficients revealed that Burkholderiales, Syntrophobacteraceae, Myrmecridium, Phaeosphaeria, Fusarium, and Phoma were better adapted to colonization of diseased plants. The relative abundance of Fusarium oxysporum (R = 0.841, P < 0.05) and Phaeosphaeria rousseliana (R = 0.830, P < 0.05) were positively associated with the death rate. F. oxysporum was a pathogen of notoginseng root-rot that caused seedling death. Negative correlation coefficients indicated that Thermogemmatisporaceae, Actinosynnemataceae, Hydnodontaceae, Herpotrichiellaceae, and Coniosporium might be antagonists of pathogens, and the relative abundance of Coniosporium perforans was negatively correlated with the death rate. Our findings provide a dynamic overview of the microbial community and present a clear scope for screening beneficial microbes and pathogens of notoginseng.
GigaScience | 2017
Jiang Xu; Yang Chu; Baosheng Liao; Shuiming Xiao; Qinggang Yin; Rui Bai; He Su; Linlin Dong; Xiwen Li; Jun Qian; Jingjing Zhang; Yujun Zhang; Xiaoyan Zhang; Jie Zhang; Guozheng Li; Lei Zhang; Zhenzhan Chang; Yuebin Zhang; Zhengwei Jia; Zhixiang Liu; Daniel Afreh; Ruth Nahurira; Lianjuan Zhang; Ruiyang Cheng; Yingjie Zhu; Guangwei Zhu; Wei Rao; Chao Zhou; Lirui Qiao; Zhihai Huang
Abstract Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plants large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb.
Molecules | 2017
Jingjing Zhang; He Su; Lei Zhang; Baosheng Liao; Shuiming Xiao; Linlin Dong; Zhigang Hu; Ping Wang; Xiwen Li; Zhihai Huang; Zhi-Ming Gao; Lianjuan Zhang; Liang Shen; Ruiyang Cheng; Jiang Xu; Chen Sl
Herbgenomics provides a global platform to explore the genetics and biology of herbs on the genome level. Panax ginseng C.A. Meyer is an important medicinal plant with numerous pharmaceutical effects. Previous reports mainly discussed the transcriptome of ginseng at the organ level. However, based on mass spectrometry imaging analyses, the ginsenosides varied among different tissues. In this work, ginseng root was separated into three tissues—periderm, cortex and stele—each for five duplicates. The chemical analysis and transcriptome analysis were conducted simultaneously. Gene-encoding enzymes involved in ginsenosides biosynthesis and modification were studied based on gene and molecule data. Eight widely-used ginsenosides were distributed unevenly in ginseng roots. A total of 182,881 unigenes were assembled with an N50 contig size of 1374 bp. About 21,000 of these unigenes were positively correlated with the content of ginsenosides. Additionally, we identified 192 transcripts encoding enzymes involved in two triterpenoid biosynthesis pathways and 290 transcripts encoding UDP-glycosyltransferases (UGTs). Of these UGTs, 195 UGTs (67.2%) were more highly expressed in the periderm, and that seven UGTs and one UGT were specifically expressed in the periderm and stele, respectively. This genetic resource will help to improve the interpretation on complex mechanisms of ginsenosides biosynthesis, accumulation, and transportation.
Acta Pharmaceutica Sinica B | 2018
Guangfei Wei; Linlin Dong; Juan Yang; Lianjuan Zhang; Jiang Xu; Feng Yang; Ruiyang Cheng; Ran Xu; Shilin Chen
Panax notoginseng is famous for its important therapeutic effects. Saponins are bioactive compounds found in different parts and developmental stages of P. notoginseng plants. Thus, it is urgently to study saponins distribution in different parts and growth ages of P. notoginseng plants. In this study, potential biomarkers were found, and their chemical characteristic differences were revealed through metabolomic analysis. High-performance liquid chromatography data indicated the higher content of saponins (i.e., Rg1, Re, Rd, and Rb1) in the underground parts than that in the aerial parts. 20(S)-Protopanaxadiol saponins were mainly distributed in the aerial parts. Additionally, the total saponin content in the 3-year-old P. notoginseng plant (188.0 mg/g) was 1.4-fold higher than that in 2-year-old plant (130.5 mg/g). The transcriptomic analysis indicated the tissue-specific transcription expression of genes, namely, PnFPS, PnSS, PnSE1, PnSE2, and PnDS, which encoded critical synthases in saponin biosyntheses. These genes showed similar expression patterns among the parts of P. notoginseng plants. The expression levels of these genes in the flowers and leaves were 5.2fold higher than that in the roots and fibrils. These results suggested that saponins might be actively synthesized in the aerial parts and transformed to the underground parts. This study provides insights into the chemical and genetic characteristics of P. notoginseng to facilitate the synthesis of its secondary metabolites and a scientific basis for appropriate collection and rational use of this plant.
Acta Pharmaceutica Sinica B | 2018
Linlin Dong; Jiang Xu; Lianjuan Zhang; Ruiyang Cheng; Guangfei Wei; He Su; Juan Yang; Jun Qian; Ran Xu; Shilin Chen
The cultivation of Panax plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities; these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem.
Molecules | 2018
Guangfei Wei; Fugang Wei; Can Yuan; Zhongjian Chen; Yong Wang; Jiang Xu; Yongqing Zhang; Linlin Dong; Chen Sl
Panax notoginseng is famous for its important therapeutic effects and commonly used worldwide. The active ingredients saponins have distinct contents in different tissues of P. notoginseng, and they may be related to the expression of key genes in the synthesis pathway. In our study, high-performance liquid chromatography results indicated that the contents of protopanaxadiol-(Rb1, Rc, Rb2, and Rd) and protopanaxatriol-type (R1, Rg1, and Re) saponins in below ground tissues were higher than those in above ground tissues. Clustering dendrogram and PCA analysis suggested that the below and above ground tissues were clustered into two separate groups. A total of 482 and 882 unigenes were shared in the below and above ground tissues, respectively. A total of 75 distinct expressions of CYPs transcripts (RPKM ≥ 10) were detected. Of these transcripts, 38 and 37 were highly expressed in the below ground and above ground tissues, respectively. RT-qPCR analysis showed that CYP716A47 gene was abundantly expressed in the above ground tissues, especially in the flower, whose expression was 31.5-fold higher than that in the root. CYP716A53v2 gene was predominantly expressed in the below ground tissues, especially in the rhizome, whose expression was 20.1-fold higher than that in the flower. Pearson’s analysis revealed that the CYP716A47 expression was significantly correlated with the contents of ginsenoside Rc and Rb2. The CYP716A53v2 expression was associated with the saponin contents of protopanaxadiol-type (Rb1 and Rd) and protopanaxatriol-type (R1, Rg1, and Re). Results indicated that the expression patterns of CYP716A47 and CYP716A53v2 were correlated with the distribution of protopanaxadiol-type and protopanaxatriol-type saponins in P. notoginseng. This study identified the pivotal genes regulating saponin distribution and provided valuable information for further research on the mechanisms of saponin synthesis, transportation, and accumulation.
Chinese Medicine | 2018
Linlin Dong; Ruiyang Cheng; Lina Xiao; Fugang Wei; Guangfei Wei; Jiang Xu; Yong Wang; Xiaotong Guo; Zhongjian Chen; Shilin Chen
BackgroundBacterial endophytes are widespread inhabitants inside plant tissues that play crucial roles in plant growth and biotransformation. This study aimed to offer information for the exploitation of endophytes by analyzing the bacterial endophytes in different parts of Panax notoginseng.MethodsWe used high-throughput sequencing methods to analyze the diversity and composition of bacterial endophytes from different parts of P. notoginseng.ResultsA total of 174,761 classified sequences were obtained from the analysis of 16S ribosomal RNA in different parts of P. notoginseng. Its fibril displayed the highest diversity of bacterial endophytes. Principal coordinate analysis revealed that the compositions of the bacterial endophytes from aboveground parts (flower, leaf, and stem) differed from that of underground parts (root and fibril). The abundances of Conexibacter, Gemmatimonas, Holophaga, Luteolibacter, Methylophilus, Prosthecobacter, and Solirubrobacter were significantly higher in the aboveground parts than in the underground parts, whereas the abundances of Bradyrhizobium, Novosphingobium, Phenylobacterium, Sphingobium, and Steroidobacter were markedly lower in the aboveground parts.ConclusionsOur results elucidated the comprehensive diversity and composition profiles of bacterial endophytes in different parts of 3-year-old P. notoginseng. Our data offered pivotal information to clarify the role of endophytes in the production of P. notoginseng and its important metabolites.
bioRxiv | 2017
Linlin Dong; Jiang Xu; Lianjuan Zhang; Guangfei Wei; He Su; Juan Yang; Jun Qian; Ran Xu; Baosheng Liao; Liang Shen; Ruiyang Cheng; Chen Sl
Replanting problem is a common and serious issue hindering the continuous cultivation of Panax plants. Changes in soil microbial community driven by plant species of different ages and developmental stages are speculated to cause this problem. Inoculation of microbial antagonists is proposed to alleviate replanting issues efficiently. High-throughput sequencing revealed that bacterial diversity evidently decreased, and fungal diversity markedly increased in soils of adult ginseng plants in the root growth stage. Relatively few beneficial microbe agents, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed. On the contrary, the relative abundance of harmful microorganism agents, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased with pant age. Furthermore, Bacillus subtilis 50-1 was isolated and served as microbial antagonists against pathogenic Fusarium oxysporum of ginseng root-rot, and its biocontrol efficacy was 67.8% using a dual culture assay. The ginseng death rate and relative abundance of Fusarium decreased by 63.3% and 46.1%, respectively, after inoculation with 50-1 in replanting soils. Data revealed that changes in the diversity and composition of rhizospheric microbial communities driven by ginseng of different ages and developmental stages could cause microecological degradation. Biocontrol using microbial antagonists was an effective method for alleviating the replanting problem. Highlight Changes in rhizospheric microbial communities driven by ginseng plants 13 of different ages and developmental stages could cause microecological degradation. 14 Biocontrol using microbial antagonists effectively alleviated the replanting problem.
New Phytologist | 2014
Qiushi Li; Ying Li; Jingyuan Song; Haibin Xu; Jiang Xu; Yingjie Zhu; Xiwen Li; Huanhuan Gao; Linlin Dong; Jun Qian; Chao Sun; Shilin Chen