Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linlin Zhang is active.

Publication


Featured researches published by Linlin Zhang.


Nature | 2012

The oyster genome reveals stress adaptation and complexity of shell formation

Guofan Zhang; Xiaodong Fang; Ximing Guo; Li Li; Ruibang Luo; Fei Xu; Pengcheng Yang; Linlin Zhang; Xiaotong Wang; Haigang Qi; Zhiqiang Xiong; Huayong Que; Yinlong Xie; Peter W. H. Holland; Jordi Paps; Yabing Zhu; Fucun Wu; Yuanxin Chen; Jiafeng Wang; Chunfang Peng; Jie Meng; Lan Yang; Jun Liu; Bo Wen; Na Zhang; Zhiyong Huang; Qihui Zhu; Yue Feng; Andrew Mount; Dennis Hedgecock

The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster’s adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.


Scientific Reports | 2015

Massive expansion and functional divergence of innate immune genes in a protostome.

Linlin Zhang; Li Li; Ximing Guo; Gary W. Litman; Larry J. Dishaw; Guofan Zhang

The molecules that mediate innate immunity are encoded by relatively few genes and exhibit broad specificity. Detailed annotation of the Pacific oyster (Crassostrea gigas) genome, a protostome invertebrate, reveals large-scale duplication and divergence of multigene families encoding molecules that effect innate immunity. Transcriptome analyses indicate dynamic and orchestrated specific expression of numerous innate immune genes in response to experimental challenge with pathogens, including bacteria, and a pathogenic virus. Variable expression of individual members of the multigene families encoding these genes also occurs during different types of abiotic stress (environmentally-equivalent conditions of temperature, salinity and desiccation). Multiple families of immune genes are responsive in concert to certain biotic and abiotic challenges. Individual members of expanded families of immune genes are differentially expressed under both biotic challenge and abiotic stress conditions. Members of the same families of innate immune molecules also are transcribed in developmental stage- and tissue-specific manners. An integrated, highly complex innate immune system that exhibits remarkable discriminatory properties and responses to different pathogens as well as environmental stress has arisen through the adaptive recruitment of tandem duplicated genes. The co-adaptive evolution of stress and innate immune responses appears to have an ancient origin in phylogeny.


Marine Biotechnology | 2014

Transcriptome Analysis Reveals a Rich Gene Set Related to Innate Immunity in the Eastern Oyster (Crassostrea virginica)

Linlin Zhang; Li Li; Yabing Zhu; Guofan Zhang; Ximing Guo

As a benthic filter-feeder of estuaries, the eastern oyster, Crassostrea virginica, faces tremendous exposure to microbial pathogens. How eastern oysters without adaptive immunity survive in pathogen-rich environments is of fundamental interest, but studies on its immune system are hindered by the lack of genomic resources. We sequenced the transcriptome of an adult oyster with short Illumina reads and assembled 66,229 contigs with a N50 length of 1,503xa0bp. The assembly covered 89.4xa0% of published ESTs and 97.9xa0% of mitochondrial genes demonstrating its quality. A set of 39,978 contigs and unigenes (>300xa0bp) were identified and annotated by searching public databases. Analysis of the gene set yielded a diverse set of 657 genes related to innate immunity, including many pertaining to pattern recognition, effectors, signal transduction, cytokines, and apoptosis. Gene families encoding C1q domain containing proteins, CTLD, IAPs, Ig_I-set, and TRAFs expanded in C. virginica and Crassostrea gigas. Many key genes of the apoptosis system including IAP, BAX, BAC-2, caspase, FADD, and TNFR were identified, suggesting C. virginica posses advanced apoptosis and apoptosis-regulating systems. Our results show that short Illumina reads can produce transcriptomes of highly polymorphic genomes with coverage and integrity comparable to that from longer 454 reads. The expansion and high diversity in gene families related to innate immunity, point to a complex defense system in the lophotrochozoan C. virginica, probably in adaptation to a pathogen-rich environment.


Fish & Shellfish Immunology | 2011

A Crassostrea gigas Toll-like receptor and comparative analysis of TLR pathway in invertebrates

Linlin Zhang; Li Li; Guofan Zhang

Toll-like receptor (TLR) signaling pathway was an important and evolutionarily conserved innate immune pathway. Evolutionary lineage of this pathway in the Lophotrochozoans is still less understood. In this study, we cloned a novel TLR, a key component of TLR pathway, from Crassostrea gigas, and named it CgToll-1. The 4343 base pairs full-length cDNA was assembled with the 3 and 5 RACE (rapid amplification of cDNA ends) PCR results, and containing a 3540 bp open reading frame, which encoding a putative TLR protein of 1179 amino acid residues. Real-time reverse transcription polymerase chain reaction analysis revealed that the highest CgToll-1 expression level was in hemolymph, and the expression pattern in hemolymph dramatically increased in the presence of bacteria Vibrio anguillarum. Furthermore, TLR pathway core genes of mollusks were searched and compared with model invertebrates. Phylogenetic trees of two downstream genes (IκB, Rel) showed that mollusks genes were closer to Drosophila melanogaster than Strongylocentrotus purpuratus, while three upstream genes (MyD88, IRAK, TRAF6) showed the opposite propensity. We have also detected that these two downstream genes were significantly more conservative than the three upstream genes based on amino acid sequence alignment. We found no significant difference between the codon usage biases of TLR pathway genes. This study suggests that CgToll-1 was a constitutive and inducible protein and thus could play an important role in the immune responses against bacterium infection. Besides, comparative analysis of TLR pathway showed that gene loss and divergence might exist during evolution in invertebrate.


Fish & Shellfish Immunology | 2013

Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR.

Yishuai Du; Linlin Zhang; Fei Xu; Baoyu Huang; Guofan Zhang; Li Li

Hatchery-reared larvae of the Pacific oyster (Crassostrea gigas) often suffer from massive mortality induced by Ostreid herpesvirus 1 (OsHV-1) infection, indicating the importance of better understanding of oyster immune defense systems. The accuracy of measurements of gene expression levels based on quantitative real-time PCR assays relies on the use of housekeeping genes as internal controls; however, few studies have focused on the selection of such internal controls. In this study, we conducted a comprehensive investigation of internal control genes during oyster development in virus-infected and uninfected samples. Transcriptome data for 38 developmental stages were downloaded and the gene expression patterns were classified into 30 clusters. A total of 317 orthologs of classical housekeeping genes in the oyster genome were annotated. After combining the expression profiles and oyster housekeeping gene dataset, 14 candidate internal controls were selected for further investigation: Elongation factor-1α (EF-1α), 18S rRNA (18S), 28S rRNA (28S), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin (ACT), Ribosomal protein L7 (RL7), Ribosomal protein L27 (RL27), Ribosomal protein L36 (RL36), Ribosomal protein S18 (RS18), Heterogeneous nuclear ribonucleoprotein A2/B1 (RO21), Eukaryotic translation elongation factor 2 (EF2), Ubiquitin-conjugating enzyme E2D2 (UBCD1), S-phase kinase-associated protein 1 (SKP1) and Heterogeneous nuclear ribonucleoprotein Q (HNRPQ). RNA was extracted from oyster larvae infected with OsHV-1 (group A; GA), and OsHV-1 free larvae (group B; GB). The expression levels of the 14 candidate internal controls were studied in GA and GB larvae by real-time PCR. Their expression stabilities were further analyzed using the GeNorm program. RL7 and RS18 were the most stable genes in both OsHV-1 infected (GA) and uninfected (GB) larvae. These results suggest that RL7 and RS18 could be used as internal controls for studying gene expression in normal growing oyster larvae and in OsHV-1 infected larvae. These high quality internal controls will be a valuable resource in future studies of oyster larval mortality.


Fish & Shellfish Immunology | 2015

Immune and stress responses in oysters with insights on adaptation.

Ximing Guo; Yan He; Linlin Zhang; Christophe Lelong; Aude Jouaux

Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oysters immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oysters immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oysters adaptation to highly stressful and widely changing environments.


Developmental and Comparative Immunology | 2011

Gene discovery, comparative analysis and expression profile reveal the complexity of the Crassostrea gigas apoptosis system.

Linlin Zhang; Li Li; Guofan Zhang

Apoptosis system was reported to play important role in organism immunity, but it was a currently understudied respect in molluscan immunity studies. Base on the recent generation of ESTs in the pacific oyster, Crassostrea gigas, a survey of apoptosis-related molecules was conducted in the assembled unigenes, we found that the basic genes and domains in apoptosis-associated proteins were conserved, the overall apoptotic machinery was complex in C. gigas and that the organism had an expanded number of putative baculovirus inhibitor of apoptosis repeat domains. Moreover, four typical apoptosis-related genes were cloned in C. gigas and compared with the sequences of these genes in Drosophila melanogaster and Homo sapiens. The expression level of these four apoptosis-related genes in the hemolymph increased dramatically in the presence of the bacteria, Vibrio anguillarum, indicating their role in bacterial defense. Our results suggest that the oyster apoptosis system is not simple and cannot be represented by model invertebrates.


Annual Review of Animal Biosciences | 2016

Molecular Basis for Adaptation of Oysters to Stressful Marine Intertidal Environments

Guofan Zhang; Li Li; Jie Meng; Haigang Qi; Tao Qu; Fei Xu; Linlin Zhang

Oysters that occupy estuarine and intertidal habitats have well-developed stress tolerance mechanisms to tolerate harsh and dynamically changing environments. In this review, we summarize common pathways and genomic features in oyster that are responsive to environmental stressors such as temperature, salinity, hypoxia, air exposure, pathogens, and anthropogenic pollutions. We first introduce the key genes involved in several pathways, which constitute the molecular basis for adaptation to stress. We use genome analysis to highlight the strong cellular homeostasis system, a unique adaptive characteristic of oysters. Next, we provide a global view of features of the oyster genome that contribute to stress adaptation, including oyster-specific gene expansion, highly inducible expression, and functional divergence. Finally, we review the consequences of interactions between oysters and the environment from ecological and evolutionary perspectives by discussing mass mortality and adaptive divergence among populations and related species of the genus Crassostrea. We conclude with prospects for future study.


PLOS ONE | 2014

Identification and functional characterization of two executioner caspases in Crassostrea gigas.

Tao Qu; Baoyu Huang; Linlin Zhang; Li Li; Fei Xu; Wen Huang; Chunyan Li; Yishuai Du; Guofan Zhang

Caspase-3 and caspase-7 are two key effector caspases that play important roles in apoptotic pathways that maintain normal tissue and organ development and homeostasis. However, little is known about the sequence, structure, activity, and function of effector caspases upon apoptosis in mollusks, especially marine bivalves. In this study, we investigated the possible roles of two executioner caspases in the regulation of apoptosis in the Pacific oyster Crassostrea gigas. A full-length capase-3–like gene named Cgcaspase-3 was cloned from C.gigas cDNA, encoding a predicted protein containing caspase family p20 and p10 domain profiles and a conserved caspase active site motif. Phylogenetic analysis demonstrated that both Cgcaspase-3 and Cgcaspase-1 may function as effector caspases clustered in the invertebrate branch. Although the sequence identities between the two caspases was low, both enzymes possessed executioner caspase activity and were capable of inducing cell death. These results suggested that Cgcaspase-3 and Cgcaspase-1 were two effector caspases in C. gigas. We also observed that nucleus-localized Cgcaspase-3, may function as a caspase-3–like protein and cytoplasm-localized Cgcaspase-1 may function as a caspase-7–like protein. Both Cgcaspase-3 and Cgcaspase-1 mRNA expression increased after larvae settled on the substratum, suggesting that both caspases acted in several tissues or organs that degenerated after oyster larvae settlement. The highest caspase expression levels were observed in the gills indicating that both effector caspases were likely involved in immune or metabolic processes in C. gigas.


BMC Genomics | 2014

Genome-wide and single-base resolution DNA methylomes of the Pacific oyster Crassostrea gigas provide insight into the evolution of invertebrate CpG methylation

Xiaotong Wang; Qiye Li; Jinmin Lian; Li Li; Lijun Jin; Huimin Cai; Fei Xu; Haigang Qi; Linlin Zhang; Fucun Wu; Jie Meng; Huayong Que; Xiaodong Fang; Ximing Guo; Guofan Zhang

BackgroundStudies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc.ResultsHomologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster’s mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5’-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms.ConclusionsComparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these relatively young’ genes was critical for the origin and radiation of eukaryotes.

Collaboration


Dive into the Linlin Zhang's collaboration.

Top Co-Authors

Avatar

Guofan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Baoyu Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xueying Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yishuai Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haigang Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huayong Que

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tao Qu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge