Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linlong Tang is active.

Publication


Featured researches published by Linlong Tang.


RSC Advances | 2015

Wearable temperature sensor based on graphene nanowalls

Jun Yang; Dapeng Wei; Linlong Tang; Xuefen Song; Wei Luo; Jin Chu; Tianpeng Gao; Haofei Shi; Chunlei Du

We demonstrate an ultrasensitive wearable temperature sensor prepared using an emerging material, graphene nanowalls (GNWs), and its ease of combination with polydimethylsiloxane (PDMS). Fabrication of the sensor allows for a polymer-assisted transfer method making it considerably facile, biocompatible and cost effective. The resultant device exhibits a positive temperature coefficient of resistivity (TCR) as high as 0.214 °C−1, which is three fold higher than that of conventional counterparts. We attribute this to the excellent stretchability and thermal sensitivity of GNWs together with the large expansion coefficient of PDMS. Moreover, the sensor is capable of monitoring body temperature in real time, and it presents a quite fast response/recovery speed as well as long term stability. Such wearable temperature sensors could constitute a significant step towards integration with the next frontier in personalized healthcare and human–machine interface systems.


Nanoscale | 2016

2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells

Chaoyan Ma; Chongqian Leng; Yixiong Ji; Xingzhan Wei; Kuan Sun; Linlong Tang; Jun Yang; Wei Luo; Chaolong Li; Yunsheng Deng; Shuanglong Feng; Jun Shen; Shirong Lu; Chunlei Du; Haofei Shi

The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.


Optics Express | 2011

General conformal transformation method based on Schwarz-Christoffel approach

Linlong Tang; Jinchan Yin; Guishan Yuan; Jinglei Du; Hongtao Gao; Xiaochun Dong; Y. M. Lu; Chunlei Du

A general conformal transformation method (CTM) is proposed to construct the conformal mapping between two irregular geometries. In order to find the material parameters corresponding to the conformal transformation between two irregular geometries, two polygons are utilized to approximate the two irregular geometries, and an intermediate geometry is used to connect the mapping relations between the two polygons. Based on these manipulations, the approximate material parameters for TE and TM waves are finally obtained by calculating the Schwarz-Christoffel (SC) mappings. To demonstrate the validity of the method, a phase modulator and a plane focal surface Luneburg lens are designed and simulated by the finite element method. The results show that the conformal transformation can be expanded to the cases that the transformed objects are with irregular geometries.


Optics Express | 2014

Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems

Linlong Tang; Jinglei Du; Chunlei Du; Peng Zhu; Haofei Shi

We investigate the excitations of graphene surface plasmon waves in grating-spacer-graphene hybrid systems. It is demonstrated that the resonant absorption rate is scaling invariant as the geometric parameters of the hybrid system are scaled, and this phenomenon is nearly unaffected by the dispersions of the optical parameters of graphene and the grating material. We present an analytical model to calculate the absorption rate and elucidate that the scaling invariant phenomenon originates from the scalabilities of the graphene surface plasmon modes. This study could benefit the development of graphene plasmonic devices at infrared and terahertz frequencies.


Sensors | 2016

Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing

Wei Wei; Jinpeng Nong; Guiwen Zhang; Linlong Tang; Xiao Jiang; Na Chen; Suqin Luo; Guilian Lan; Yong Zhu

A graphene-based long-period fiber grating (LPFG) surface plasmon resonance (SPR) sensor is proposed. A monolayer of graphene is coated onto the Ag film surface of the LPFG SPR sensor, which increases the intensity of the evanescent field on the surface of the fiber and thereby enhances the interaction between the SPR wave and molecules. Such features significantly improve the sensitivity of the sensor. The experimental results demonstrate that the sensitivity of the graphene-based LPFG SPR sensor can reach 0.344 nm%−1 for methane, which is improved 2.96 and 1.31 times with respect to the traditional LPFG sensor and Ag-coated LPFG SPR sensor, respectively. Meanwhile, the graphene-based LPFG SPR sensor exhibits excellent response characteristics and repeatability. Such a SPR sensing scheme offers a promising platform to achieve high sensitivity for gas-sensing applications.


Sensors | 2016

Conformal Graphene-Decorated Nanofluidic Sensors Based on Surface Plasmons at Infrared Frequencies

Wei Wei; Jinpeng Nong; Linlong Tang; Guiwen Zhang; Jun Yang; Wei Luo

An all-in-one prism-free infrared sensor based on graphene surface plasmons is proposed for nanofluidic analysis. A conformal graphene-decorated nanofluidic sensor is employed to mimic the functions of a prism, sensing plate, and fluidic channel in the tradition setup. Simulation results show that the redshift of the resonant wavelength results in the improvement of sensitivity up to 4525 nm/RIU. To reshape the broadened spectral lines induced by the redshift of the resonant wavelength to be narrower and deeper, a reflection-type configuration is further introduced. By tuning the distance between the graphene and reflective layers, the figure of merit (FOM) of the device can be significantly improved and reaches a maximum value of 37.69 RIU−1, which is 2.6 times that of the former transmission-type configuration. Furthermore, the optimized sensor exhibits superior angle-insensitive property. Such a conformal graphene-decorated nanofluidic sensor offers a novel approach for graphene-based on-chip fluidic biosensing.


ACS Applied Materials & Interfaces | 2018

Ultraflexible and High-Performance Multilayer Transparent Electrode Based on ZnO/Ag/CuSCN

Yixiong Ji; Jun Yang; Wei Luo; Linlong Tang; Xiangxing Bai; Chongqian Leng; Chaoyan Ma; Xingzhan Wei; Jing Wang; Jun Shen; Shirong Lu; Kuan Sun; Haofei Shi

Driven by huge demand for flexible optoelectronic devices, high-performance flexible transparent electrodes are continuously sought. In this work, a flexible multilayer transparent electrode with the structure of ZnO/Ag/CuSCN (ZAC) is engineered, featuring inorganic solution-processed cuprous thiocyanate (CuSCN) as a hole-transport antireflection coating. The ZAC electrode exhibits an average transmittance of 94% (discounting the substrate) in the visible range, a sheet resistance ( Rsh) of 9.7 Ω/sq, a high mechanical flexibility without Rsh variation after bending 10 000 times, a long-term stability of 400 days in ambient environment, and a scalable fabrication process. Moreover, spontaneously formed nanobulges are integrated into ZAC electrode, and light outcoupling is significantly improved. As a result, when applied into super yellow-based flexible organic light-emitting diode, the ZAC electrode provides a high-current efficiency of 23.4 cd/A and excellent device flexibility. These results suggest that multilayer thin films with ingenious material design and engineering can serve as a promising flexible transparent electrode for optoelectronic applications.


Optics Express | 2018

Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices

Linlong Tang; Wei Wei; Xingzhan Wei; Jinpeng Nong; Chunlei Du; Haofei Shi

The mechanism of propagating graphene plasmons excitation using a nano-grating and a Fabry-Pérot cavity as the optical coupling components is studied. It is demonstrated that the system could be well described within the temporal coupled mode theory using two phenomenological parameters, namely, the intrinsic loss rate and the coupling rate of a graphene plasmonic mode, and their analytical expressions are derived. It is found that the intrinsic loss rate is solely determined by the electron relaxation time of graphene, while independent of the field distributions of the modes. Such result originates from the negligible magnetic field energy of the graphene plasmonic mode. The coupling rate is governed by the optical coupling components parameters, and varies periodically with the Fabry-Pérot cavity length. By modulating the two rates, quality factors and absorption rates can be adjusted. Furthermore, it is revealed that low refractive index of the Fabry-Pérot cavity material is vital to the enlargement of tunable band, and the underlying physics is discussed. Such plasmon excitation configuration is insensitive to light incident angle and could serve as a platform for many tunable infrared photonic device, such as surface-enhanced infrared absorption spectroscopies, infrared detectors and modulators.


Optics Express | 2018

Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons

Jinpeng Nong; Wei Wei; Wei Wang; Guilian Lan; Zhengguo Shang; Juemin Yi; Linlong Tang

The anisotropic plasmons properties of black phosphorus allow for realizing direction-dependent plasmonics devices. Here, we theoretically investigated the hybridization between graphene surface plasmons (GSP) and anisotropic black phosphorus localized surface plasmons (BPLSP) in the strong coupling regime. By dynamically adjusting the Fermi level of graphene, we show that the strong coherent GSP-BPLSP coupling can be achieved in both armchair and zigzag directions, which is attributed to the anisotropic black phosphorus with different in-plane effective electron masses along the two crystal axes. The strong coupling is quantitatively described by calculating the dispersion of the hybrid modes using a coupled oscillator model. Mode splitting energy of 26.5 meV and 19 meV are determined for the GSP-BPLSP hybridization along armchair and zigzag direction, respectively. We also find that the coupling strength can be strongly affected by the distance between graphene sheet and black phosphorus nanoribbons. Our work may provide the building blocks to construct future highly compact anisotropic plasmonics devices based on two-dimensional materials at infrared and terahertz frequencies.


Nanophotonics | 2018

Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors

Hui Zhang; Kangyi Zhao; Songya Cui; Jun Yang; Dahua Zhou; Linlong Tang; Jun Shen; Shuanglong Feng; Weiguo Zhang; Yongqi Fu

Abstract Graphene nanowalls (GNWs) exhibit outstanding optoelectronic properties due to their peculiar structure, which makes them a great potential in infrared (IR) detection. Herein, a novel IR detector that is composed of polydimethylsiloxane (PDMS) and designed based on GNWs is demonstrated. Such detector possesses an anomalous temperature coefficient of resistance of 180% K−1 and a relatively high change rate of current (up to 16%) under IR radiation from the human body. It primarily attributes to the ultra-high IR absorption of the GNWs and large coefficient of thermal expansion of PDMS. In addition, the GNW/PDMS device possesses excellent detection performance in the IR region with a responsivity of ~1.15 mA W−1. The calculated detectivity can reach 1.07×108 cm Hz1/2 W−1, which is one or two orders of magnitude larger than that of the traditional carbon-based IR detectors. The significant performance indicates that the GNW/PDMS-based devices reveal a novel design concept and promising applications for the future new-generation IR photodetectors.

Collaboration


Dive into the Linlong Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wei

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Haofei Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunlei Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Luo

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Na Chen

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Xingzhan Wei

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge