Lionel Breton
L'Oréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lionel Breton.
Scientific Reports | 2016
Carlota Oleaga; Catia Bernabini; Alec S.T. Smith; Balaji Srinivasan; Max Jackson; William McLamb; Vivien Platt; Richard Bridges; Yunqing Cai; Navaneetha Santhanam; Bonnie J. Berry; Sarah Najjar; Nesar Akanda; Xiufang Guo; Candace Martin; Gail Ekman; Mandy B. Esch; Jessica Langer; Gladys Ouédraogo; José Cotovio; Lionel Breton; Michael L. Shuler; James J. Hickman
We report on a functional human model to evaluate multi-organ toxicity in a 4-organ system under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 14 days. Computer simulations of the platform established flow rates and resultant shear stress within accepted ranges. Viability of the system was demonstrated for 14 days as well as functional activity of cardiac, muscle, neuronal and liver modules. The pharmacological relevance of the integrated modules were evaluated for their response at 7 days to 5 drugs with known side effects after a 48 hour drug treatment regime. The results of all drug treatments were in general agreement with published toxicity results from human and animal data. The presented phenotypic culture model exhibits a multi-organ toxicity response, representing the next generation of in vitro systems, and constitutes a step towards an in vitro “human-on-a-chip” assay for systemic toxicity screening.
Experimental Dermatology | 2009
Audrey Gueniche; Philippe Bastien; Jean Marc Ovigne; Michel Kermici; Guy Courchay; Veronique Chevalier; Lionel Breton; Isabelle Castiel-Higounenc
Please cite this paper as: Bifidobacterium longum lysate, a new ingredient for reactive skin. Experimental Dermatology 2010; 19: e1–e8.
Journal of Investigative Dermatology | 2014
Florian Meisgen; Ning Xu Landén; Aoxue Wang; Bence Rethi; Charbel Bouez; Michela Zuccolo; Audrey Gueniche; Mona Ståhle; Enikö Sonkoly; Lionel Breton; Andor Pivarcsi
Keratinocytes represent the first line of defense against pathogens in the skin and have important roles in initiating and regulating inflammation during infection and autoimmunity. Here we investigated the role of miR-146a in the regulation of the innate immune response of keratinocytes. Toll-like receptor 2 (TLR2) stimulation of primary human keratinocytes resulted in an NF-κB- and mitogen-activated protein kinase-dependent upregulation of miR-146a expression, which was surprisingly long lasting, contrasting with the rapid and transient induction of inflammatory mediators. Overexpression of miR-146a significantly suppressed the production of IL-8, CCL20, and tumor necrosis factor-α, which functionally suppressed the chemotactic attraction of neutrophils by keratinocytes. Inhibition of endogenous miR-146a induced the production of inflammatory mediators even in nonstimulated keratinocytes, and potentiated the effect of TLR2 stimulation. Transcriptomic profiling revealed that miR-146a suppresses the expression of a large number of immune-related genes in keratinocytes. MiR-146a downregulated interleukin-1 receptor-associated kinase 1 and TNF receptor-associated factor 6, two key adapter molecules downstream of TLR signaling, and suppressed NF-κB promoter-binding activity as shown by promoter luciferase experiments. Together, these data identify miR-146a as a regulatory element in keratinocyte innate immunity, which prevents the production of inflammatory mediators under homeostatic conditions and serves as a potent negative feedback regulator after TLR2 stimulation.
PLOS ONE | 2013
Cécile Clavaud; Roland Jourdain; Avner Bar-Hen; Magali Tichit; Christiane Bouchier; Florence Pouradier; Charles El Rawadi; Jacques Guillot; Florence Ménard-Szczebara; Lionel Breton; Jean-Paul Latgé; Isabelle Mouyna
The bacterial and fungal communities associated with dandruff were investigated using culture-independent methodologies in the French subjects. The major bacterial and fungal species inhabiting the scalp subject’s were identified by cloning and sequencing of the conserved ribosomal unit regions (16S for bacterial and 28S-ITS for fungal) and were further quantified by quantitative PCR. The two main bacterial species found on the scalp surface were Propionibacterium acnes and Staphylococcus epidermidis, while Malassezia restricta was the main fungal inhabitant. Dandruff was correlated with a higher incidence of M. restricta and S. epidermidis and a lower incidence of P. acnes compared to the control population (p<0.05). These results suggested for the first time using molecular methods, that dandruff is linked to the balance between bacteria and fungi of the host scalp surface.
European Journal of Dermatology | 2008
Josette Péguet-Navarro; Colette Dezutter-Dambuyant; Timo Buetler; Jacques Leclaire; Hans Smola; Stephanie Blum; Philippe Bastien; Lionel Breton; Audrey Gueniche
There is now strong evidence that probiotic bacteria can regulate inflammatory immune responses. Here, we analyzed whether oral supplementation with the probiotic bacterial strain Lactobacillus johnsonii (La1) could interfere with skin immune status following UV exposure. A randomized, double-blind, placebo controlled clinical trial was conducted with 54 healthy volunteers receiving either La1 or placebo, during six weeks prior to solar-simulated UV irradiation. Blister roofs and skin biopsies were recovered 1, 4 and 10 days after UV exposure from un-irradiated and irradiated skin and used for immunohistochemical analysis and mixed epidermal cell lymphocyte reaction (MECLR), respectively. La1 supplementation did not prevent the UV-induced phenotypic maturation of Langerhans cells (LCs) or the decrease in MECLR in irradiated skin samples, one day post-irradiation. On day 4, MECLR was still decreased in the placebo group, with a parallel reduction in the CD1a LC marker in irradiated epidermis. In contrast, the allostimulatory capacity of epidermal cells was totally recovered in the La1 group correlating with the normalization of CD1a expression within the epidermis. For the first time, the results provide evidence that ingested probiotic bacteria accelerate the recovery of skin immune homeostasis after UV-induced immunosuppression.
PLOS ONE | 2015
Yasuo Ido; Albert Duranton; Fan Lan; Karen A. Weikel; Lionel Breton; Neil B. Ruderman
The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK) suppressed senescence in hydrogen peroxide (H2O2)-treated human primary keratinocytes, a model of oxidative stress-induced cellular aging. Using this model in the present study, we observed that resveratrol, an agent that increases the activities of both AMPK and sirtuins, ameliorated two age-associated phenotypes: cellular senescence and proliferative dysfunction. In addition, we found that treatment of keratinocytes with Ex527, a specific inhibitor of sirtuin 1 (SIRT1), attenuated the ability of resveratrol to suppress senescence. In keeping with the latter observation, we noted that compared to non-senescent keratinocytes, senescent cells lacked SIRT1. In addition to these effects on H2O2-induced senescence, resveratrol also prevented the H2O2-induced decrease in proliferation (as indicated by 3H-thymidine incorporation) in the presence of insulin. This effect was abrogated by inhibition of AMPK but not SIRT1. Compared to endothelium, we found that human keratinocytes expressed relatively high levels of Forkhead box O3 (FOXO3), a downstream target of both AMPK and SIRT1. Treatment of keratinocytes with resveratrol transactivated FOXO3 and increased the expression of its target genes including catalase. Resveratrol’s effects on both senescence and proliferation disappeared when FOXO3 was knocked down. Finally, we performed an exploratory study which showed that skin from humans over 50 years old had lower AMPK activity than skin from individuals under age 20. Collectively, these findings suggest that the effects of resveratrol on keratinocyte senescence and proliferation are regulated by the AMPK-FOXO3 pathway and in some situations, but not all, by SIRT1.
PLOS ONE | 2010
Stéphane Bastianetto; Yvan Dumont; Albert Duranton; Freya Vercauteren; Lionel Breton; Rémi Quirion
Background Resveratrol is a plant-derived polyphenol with purported protecting action on various disorders associated with aging. It has been suggested that resveratrol could exert its protective action by acting on specific plasma membrane polyphenol binding sites (Han Y.S., et al. (2006) J Pharmacol Exp Ther 318:238–245). The purpose of this study was to investigate, in human skin, the possible existence of specific binding sites that mediate the protective action of resveratrol. Methods and Findings Using human skin tissue, we report here the presence of specific [3H]-resveratrol binding sites (KD = 180 nM) that are mainly located in the epidermis. Exposure of HaCaT cells to the nitric oxide free radical donor sodium nitroprusside (SNP; 0.3–3 mM) resulted in cell death which was reduced by resveratrol (EC50 = 14.7 µM), and to a much lesser extent by the resveratrol analogue piceatannol (EC50 = 95 µM) and epigallocatechin gallate (EC50 = 200 µM), a green-tea derived polyphenol. The protective action of resveratrol likely relates to its anti-apoptotic effect since at the same range of concentration it was able to reduce both the number of apoptotic cells as well as mitochondrial apoptotic events triggered by SNP. Conclusion Taken together, these findings suggest that resveratrol, by acting on specific polyphenol binding sites in epidermis, may be useful to prevent skin disorders associated with aging.
International Journal of Dermatology | 2001
Francoise Jarrousse; Sylvie Boisnic; Marie-Christine Branchet; Jean‐Yves Beranger; Gaston Godeau; Lionel Breton; Bruno Bernard; Yann Mahe
Abstract
PLOS ONE | 2016
Guillermo I. Perez Perez; Zhan Gao; Roland Jourdain; Julia Ramirez; Francesca Gany; Cécile Clavaud; Julien Demaude; Lionel Breton; Martin J. Blaser
We studied skin microbiota present in three skin sites (forearm, axilla, scalp) in men from six ethnic groups living in New York City. Methods. Samples were obtained at baseline and after four days following use of neutral soap and stopping regular hygiene products, including shampoos and deodorants. DNA was extracted using the MoBio Power Lyzer kit and 16S rRNA gene sequences determined on the IIlumina MiSeq platform, using QIIME for analysis. Results. Our analysis confirmed skin swabbing as a useful method for sampling different areas of the skin because DNA concentrations and number of sequences obtained across subject libraries were similar. We confirmed that skin location was the main factor determining the composition of bacterial communities. Alpha diversity, expressed as number of species observed, was greater in arm than on scalp or axilla in all studied groups. We observed an unexpected increase in α-diversity on arm, with similar tendency on scalp, in the South Asian group after subjects stopped using their regular shampoos and deodorants. Significant differences at phylum and genus levels were observed between subjects of the different ethnic origins at all skin sites. Conclusions. We conclude that ethnicity and particular soap and shampoo practices are secondary factors compared to the ecological zone of the human body in determining cutaneous microbiota composition.
PLOS ONE | 2012
Yasuo Ido; Albert Duranton; Fan Lan; José M. Cacicedo; Tai C. Chen; Lionel Breton; Neil B. Ruderman
We investigated the effects of AMPK on H2O2-induced premature senescence in primary human keratinocytes. Incubation with 50 µM H2O2 for 2 h resulted in premature senescence with characteristic increases in senescence-associated ß-galactosidase (SA-gal) staining 3 days later and no changes in AMPK or p38 MAPK activity. The increase in SA-gal staining was preceded by increases in both p53 phosphorylation (S15) (1 h) and transactivation (6 h) and the abundance of the cyclin inhibitor p21CIP1 (16 h). Incubation with AICAR or resveratrol, both of which activated AMPK, prevented the H2O2-induced increases in both SA-Gal staining and p21 abundance. In addition, AICAR diminished the increase in p53 transactivation. The decreases in SA-Gal expression induced by resveratrol and AICAR were prevented by the pharmacological AMPK inhibitor Compound C, expression of a DN-AMPK or AMPK knock-down with shRNA. Likewise, both knockdown of AMPK and expression of DN-AMPK were sufficient to induce senescence, even in the absence of exogenous H2O2. As reported by others, we found that AMPK activation by itself increased p53 phosphorylation at S15 in embryonic fibroblasts (MEF), whereas under the same conditions it decreased p53 phosphorylation in the keratinocytes, human aortic endothelial cells, and human HT1080 fibrosarcoma cells. In conclusion, the results indicate that H2O2 at low concentrations causes premature senescence in human keratinocytes by activating p53-p21CIP1 signaling and that these effects can be prevented by acute AMPK activation and enhanced by AMPK downregulation. They also suggest that this action of AMPK may be cell or context-specific.