Lionel C. Briand
University of Luxembourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lionel C. Briand.
IEEE Transactions on Software Engineering | 1999
Lionel C. Briand; John W. Daly; Jürgen Wüst
The increasing importance being placed on software measurement has led to an increased amount of research developing new software measures. Given the importance of object-oriented development techniques, one specific area where this has occurred is coupling measurement in object-oriented systems. However, despite a very interesting and rich body of work, there is little understanding of the motivation and empirical hypotheses behind many of these new measures. It is often difficult to determine how such measures relate to one another and for which application they can be used. As a consequence, it is very difficult for practitioners and researchers to obtain a clear picture of the state of the art in order to select or define measures for object-oriented systems. This situation is addressed and clarified through several different activities. First, a standardized terminology and formalism for expressing measures is provided which ensures that all measures using it are expressed in a fully consistent and operational manner. Second, to provide a structured synthesis, a review of the existing frameworks and measures for coupling measurement in object-oriented systems takes place. Third, a unified framework, based on the issues discovered in the review, is provided and all existing measures are then classified according to this framework. This paper contributes to an increased understanding of the state-of-the-art.
IEEE Transactions on Software Engineering | 1996
Lionel C. Briand; Sandro Morasca; Victor R. Basili
Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts, regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysts, and better evaluation methods for commercial static analyzers for practitioners. We propose a mathematical framework which is generic, because it is not specific to any particular software artifact, and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalisms and properties we introduce are convenient and intuitive. This framework contributes constructively to a firmer theoretical ground of software measurement.
international conference on software engineering | 2005
James H. Andrews; Lionel C. Briand; Yvan Labiche
The empirical assessment of test techniques plays an important role in software testing research. One common practice is to instrument faults, either manually or by using mutation operators. The latter allows the systematic, repeatable seeding of large numbers of faults; however, we do not know whether empirical results obtained this way lead to valid, representative conclusions. This paper investigates this important question based on a number of programs with comprehensive pools of test cases and known faults. It is concluded that, based on the data available thus far, the use of mutation operators is yielding trustworthy results (generated mutants are similar to real faults). Mutants appear however to be different from hand-seeded faults that seem to be harder to detect than real faults.
Journal of Systems and Software | 2000
Lionel C. Briand; Jürgen Wüst; John W. Daly; D. Victor Porter
Abstract One goal of this paper is to empirically explore the relationships between existing object-oriented (OO) coupling, cohesion, and inheritance measures and the probability of fault detection in system classes during testing. In other words, we wish to better understand the relationship between existing design measurement in OO systems and the quality of the software developed. The second goal is to propose an investigation and analysis strategy to make these kind of studies more repeatable and comparable, a problem which is pervasive in the literature on quality measurement. Results show that many of the measures capture similar dimensions in the data set, thus reflecting the fact that many of them are based on similar principles and hypotheses. However, it is shown that by using a subset of measures, accurate models can be built to predict which classes most of the faults are likely to lie in. When predicting fault-prone classes, the best model shows a percentage of correct classifications higher than 80% and finds more than 90% of faulty classes. Besides the size of classes, the frequency of method invocations and the depth of inheritance hierarchies seem to be the main driving factors of fault-proneness.
ieee international software metrics symposium | 1997
Lionel C. Briand; John W. Daly; Jürgen Wüst
The increasing importance being placed on software measurement has led to an increased amount of research developing new software measures. Given the importance of object-oriented development techniques, one specific area where this has occurred is cohesion measurement in object-oriented systems. However, despite a very interesting body of work, there is little understanding of the motivation and empirical hypotheses behind many of these new measures. It is often difficult to determine how such measures relate to one another and for which application they can be used. As a consequence, it is very difficult for practitioners and researchers to obtain a clear picture of the state-of-the-art in order to select or define cohesion measures for object-oriented systems. This situation is addressed and clarified through several different activities. First, a standardized terminology and formalism for expressing measures is provided which ensures that all measures using it are expressed in a fully consistent and operational manner. Second, to provide a structured synthesis, a review of the existing approaches to measure cohesion in object-oriented systems takes place. Third, a unified framework, based on the issues discovered in the review, is provided and all existing measures are then classified according to this framework. Finally, a review of the empirical validation work concerning existing cohesion measures is provided. This paper contributes to an increased understanding of the state-of-the-art: a mechanism is provided for comparing measures and their potential use, integrating existing measures which examine the same concepts in different ways, and facilitating more rigorous decision making regarding the definition of new measures and the selection of existing measures for a specific goal of measurement. In addition, our review of the state-of-the-art highlights several important issues: (i) many measures are not defined in a fully operational form, (ii) relatively few of them are based on explicit empirical models as recommended by measurement theory, and (iii) an even smaller number of measures have been empirically validated; thus, the usefulness of many measures has yet to be demonstrated.
international conference on software engineering | 2011
Andrea Arcuri; Lionel C. Briand
Randomized algorithms have been used to successfully address many different types of software engineering problems. This type of algorithms employ a degree of randomness as part of their logic. Randomized algorithms are useful for difficult problems where a precise solution cannot be derived in a deterministic way within reasonable time. However, randomized algorithms produce different results on every run when applied to the same problem instance. It is hence important to assess the effectiveness of randomized algorithms by collecting data from a large enough number of runs. The use of rigorous statistical tests is then essential to provide support to the conclusions derived by analyzing such data. In this paper, we provide a systematic review of the use of randomized algorithms in selected software engineering venues in 2009. Its goal is not to perform a complete survey but to get a representative snapshot of current practice in software engineering research. We show that randomized algorithms are used in a significant percentage of papers but that, in most cases, randomness is not properly accounted for. This casts doubts on the validity of most empirical results assessing randomized algorithms. There are numerous statistical tests, based on different assumptions, and it is not always clear when and how to use these tests. We hence provide practical guidelines to support empirical research on randomized algorithms in software engineering
IEEE Transactions on Software Engineering | 2006
James H. Andrews; Lionel C. Briand; Yvan Labiche; Akbar Siami Namin
The empirical assessment of test techniques plays an important role in software testing research. One common practice is to seed faults in subject software, either manually or by using a program that generates all possible mutants based on a set of mutation operators. The latter allows the systematic, repeatable seeding of large numbers of faults, thus facilitating the statistical analysis of fault detection effectiveness of test suites; however, we do not know whether empirical results obtained this way lead to valid, representative conclusions. Focusing on four common control and data flow criteria (block, decision, C-use, and P-use), this paper investigates this important issue based on a middle size industrial program with a comprehensive pool of test cases and known faults. Based on the data available thus far, the results are very consistent across the investigated criteria as they show that the use of mutation operators is yielding trustworthy results: generated mutants can be used to predict the detection effectiveness of real faults. Applying such a mutation analysis, we then investigate the relative cost and effectiveness of the above-mentioned criteria by revisiting fundamental questions regarding the relationships between fault detection, test suite size, and control/data flow coverage. Although such questions have been partially investigated in previous studies, we can use a large number of mutants, which helps decrease the impact of random variation in our analysis and allows us to use a different analysis approach. Our results are then; compared with published studies, plausible reasons for the differences are provided, and the research leads us to suggest a way to tune the mutation analysis process to possible differences in fault detection probabilities in a specific environment
IEEE Transactions on Software Engineering | 2010
Shaukat Ali; Lionel C. Briand; Hadi Hemmati; Rajwinder Kaur Panesar-Walawege
Metaheuristic search techniques have been extensively used to automate the process of generating test cases, and thus providing solutions for a more cost-effective testing process. This approach to test automation, often coined “Search-based Software Testing” (SBST), has been used for a wide variety of test case generation purposes. Since SBST techniques are heuristic by nature, they must be empirically investigated in terms of how costly and effective they are at reaching their test objectives and whether they scale up to realistic development artifacts. However, approaches to empirically study SBST techniques have shown wide variation in the literature. This paper presents the results of a systematic, comprehensive review that aims at characterizing how empirical studies have been designed to investigate SBST cost-effectiveness and what empirical evidence is available in the literature regarding SBST cost-effectiveness and scalability. We also provide a framework that drives the data collection process of this systematic review and can be the starting point of guidelines on how SBST techniques can be empirically assessed. The intent is to aid future researchers doing empirical studies in SBST by providing an unbiased view of the body of empirical evidence and by guiding them in performing well-designed and executed empirical studies.
Journal of Systems and Software | 2010
Erik Arisholm; Lionel C. Briand; Eivind B. Johannessen
This paper describes a study performed in an industrial setting that attempts to build predictive models to identify parts of a Java system with a high fault probability. The system under consideration is constantly evolving as several releases a year are shipped to customers. Developers usually have limited resources for their testing and would like to devote extra resources to faulty system parts. The main research focus of this paper is to systematically assess three aspects on how to build and evaluate fault-proneness models in the context of this large Java legacy system development project: (1) compare many data mining and machine learning techniques to build fault-proneness models, (2) assess the impact of using different metric sets such as source code structural measures and change/fault history (process measures), and (3) compare several alternative ways of assessing the performance of the models, in terms of (i) confusion matrix criteria such as accuracy and precision/recall, (ii) ranking ability, using the receiver operating characteristic area (ROC), and (iii) our proposed cost-effectiveness measure (CE). The results of the study indicate that the choice of fault-proneness modeling technique has limited impact on the resulting classification accuracy or cost-effectiveness. There is however large differences between the individual metric sets in terms of cost-effectiveness, and although the process measures are among the most expensive ones to collect, including them as candidate measures significantly improves the prediction models compared with models that only include structural measures and/or their deltas between releases - both in terms of ROC area and in terms of CE. Further, we observe that what is considered the best model is highly dependent on the criteria that are used to evaluate and compare the models. And the regular confusion matrix criteria, although popular, are not clearly related to the problem at hand, namely the cost-effectiveness of using fault-proneness prediction models to focus verification efforts to deliver software with less faults at less cost.
IEEE Transactions on Software Engineering | 2002
Lionel C. Briand; Walcélio L. Melo; Jürgen Wüst
A number of papers have investigated the relationships between design metrics and the detection of faults in object-oriented software. Several of these studies have shown that such models can be accurate in predicting faulty classes within one particular software product. In practice, however, prediction models are built on certain products to be used on subsequent software development projects. How accurate can these models be, considering the inevitable differences that may exist across projects and systems? Organizations typically learn and change. From a more general standpoint, can we obtain any evidence that such models are economically viable tools to focus validation and verification effort? This paper attempts to answer these questions by devising a general but tailorable cost-benefit model and by using fault and design data collected on two mid-size Java systems developed in the same environment. Another contribution of the paper is the use of a novel exploratory analysis technique - MARS (multivariate adaptive regression splines) to build such fault-proneness models, whose functional form is a-priori unknown. The results indicate that a model built on one system can be accurately used to rank classes within another system according to their fault proneness. The downside, however, is that, because of system differences, the predicted fault probabilities are not representative of the system predicted. However, our cost-benefit model demonstrates that the MARS fault-proneness model is potentially viable, from an economical standpoint. The linear model is not nearly as good, thus suggesting a more complex model is required.