Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lionel Gissot is active.

Publication


Featured researches published by Lionel Gissot.


Science | 2007

FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis

Laurent Corbesier; Coral Vincent; Seonghoe Jang; Fabio Fornara; Qingzhi Fan; Iain Searle; Antonis Giakountis; Sara Farrona; Lionel Gissot; Colin Turnbull; George Coupland

In plants, seasonal changes in day length are perceived in leaves, which initiate long-distance signaling that induces flowering at the shoot apex. The identity of the long-distance signal has yet to be determined. In Arabidopsis, activation of FLOWERING LOCUS T (FT) transcription in leaf vascular tissue (phloem) induces flowering. We found that FT messenger RNA is required only transiently in the leaf. In addition, FT fusion proteins expressed specifically in phloem cells move to the apex and move long distances between grafted plants. Finally, we provide evidence that FT does not activate an intermediate messenger in leaves. We conclude that FT protein acts as a long-distance signal that induces Arabidopsis flowering.


The Plant Cell | 2006

CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis

Stephan Wenkel; Franziska Turck; Kamy Singer; Lionel Gissot; José Le Gourrierec; Alon Samach; George Coupland

The CCT (for CONSTANS, CONSTANS-LIKE, TOC1) domain is found in 45 Arabidopsis thaliana proteins involved in processes such as photoperiodic flowering, light signaling, and regulation of circadian rhythms. We show that this domain exhibits similarities to yeast HEME ACTIVATOR PROTEIN2 (HAP2), which is a subunit of the HAP2/HAP3/HAP5 trimeric complex that binds to CCAAT boxes in eukaryotic promoters. Moreover, we demonstrate that CONSTANS (CO), which promotes Arabidopsis flowering, interacts with At HAP3 and At HAP5 in yeast, in vitro, and in planta. Mutations in CO that delay flowering affect residues highly conserved between CCT and the DNA binding domain of HAP2. Taken together, these data suggest that CO might replace At HAP2 in the HAP complex to form a trimeric CO/At HAP3/At HAP5 complex. Flowering was delayed by overexpression of At HAP2 or At HAP3 throughout the plant or in phloem companion cells, where CO is expressed. This phenotype was correlated with reduced abundance of FLOWERING LOCUS T (FT) mRNA and no change in CO mRNA levels. At HAP2 or At HAP3 overexpression may therefore impair formation of a CO/At HAP3/At HAP5 complex leading to reduced expression of FT. During plant evolution, the number of genes encoding HAP proteins was greatly amplified, and these proteins may have acquired novel functions, such as mediating the effect of CCT domain proteins on gene expression.


Developmental Cell | 2009

Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response

Fabio Fornara; Kishore C.S. Panigrahi; Lionel Gissot; Nicolas Sauerbrunn; Mark Rühl; José A. Jarillo; George Coupland

Flowering of Arabidopsis is induced by long summer days (LDs). The transcriptional regulator CONSTANS (CO) promotes flowering, and its transcription is increased under LDs. We systematically misexpressed transcription factors in companion cells and identified several DOF proteins that delay flowering by repressing CO transcription. Combining mutations in four of these, including CYCLING DOF FACTOR 2 (CDF2), caused photoperiod-insensitive early flowering by increasing CO mRNA levels. CO transcription is promoted to differing extents by GIGANTEA (GI) and the F-box protein FKF1. We show that GI stabilizes FKF1, thereby reducing CDF2 abundance and allowing transcription of CO. Despite the crucial function of GI in wild-type plants, introducing mutations in the four DOF-encoding genes into gi mutants restored the diurnal rhythm and light inducibility of CO. Thus, antagonism between GI and DOF transcription factors contributes to photoperiodic flowering by modulating an underlying diurnal rhythm in CO transcript levels.


Plant Journal | 2008

Systematic analysis of protein subcellular localization and interaction using high‐throughput transient transformation of Arabidopsis seedlings

Jessica Marion; Liên Bach; Yannick Bellec; Christian Meyer; Lionel Gissot; Jean-Denis Faure

The functional genomics approach requires systematic analysis of protein subcellular distribution and interaction networks, preferably by optimizing experimental simplicity and physiological significance. Here, we present an efficient in planta transient transformation system that allows single or multiple expression of constructs containing various fluorescent protein tags in Arabidopsis cotyledons. The optimized protocol is based on vacuum infiltration of agrobacteria directly into young Arabidopsis seedlings. We demonstrate that Arabidopsis epidermal cells show a subcellular distribution of reference markers similar to that in tobacco epidermal cells, and can be used for co-localization or bi-molecular fluorescent complementation studies. We then used this new system to investigate the subcellular distribution of enzymes involved in sphingolipid metabolism. In contrast to transformation systems using tobacco epidermal cells or cultured Arabidopsis cells, our system provides the opportunity to take advantage of the extensive collections of mutant and transgenic lines available in Arabidopsis. The fact that this assay uses conventional binary vectors and a conventional Agrobacterium strain, and is compatible with a large variety of fluorescent tags, makes it a versatile tool for construct screening and characterization before stable transformation. Transient expression in Arabidopsis seedlings is thus a fast and simple method that requires minimum handling and potentially allows medium- to high-throughput analyses of fusion proteins harboring fluorescent tags in a whole-plant cellular context.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development

Liên Bach; Louise V. Michaelson; Richard P. Haslam; Yannick Bellec; Lionel Gissot; Jessica Marion; Marco Da Costa; Jean Pierre Boutin; Martine Miquel; Frédérique Tellier; Frédéric Domergue; Jonathan E. Markham; Frédéric Beaudoin; Johnathan A. Napier; Jean Denis Faure

Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2–1 mutant. The pas2–1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes.


The Plant Cell | 2010

Very-Long-Chain Fatty Acids Are Involved in Polar Auxin Transport and Developmental Patterning in Arabidopsis

Françoise Roudier; Lionel Gissot; Frédéric Beaudoin; Richard P. Haslam; Louise V. Michaelson; Jessica Marion; Diana Molino; Amparo Lima; Liên Bach; Halima Morin; Frédérique Tellier; Jean-Christophe Palauqui; Yannick Bellec; Charlotte Renne; Martine Miquel; Marco DaCosta; Julien Vignard; Christine Rochat; Jonathan E. Markham; Patrick Moreau; Jonathan A. Napier; Jean-Denis Faure

This work identifies the immunophilin PASTICCINO1 as a member of the complex necessary for very-long-chain fatty acid synthesis and demonstrates that fatty acids are directly involved in auxin carrier distribution during organogenesis. Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex in the endoplasmic reticulum. The pas1 mutants are deficient in lateral root formation and are characterized by an abnormal patterning of the embryo apex, which leads to defective cotyledon organogenesis. Our data indicate that in both tissues, defective organogenesis is associated with the mistargeting of the auxin efflux carrier PIN FORMED1 in specific cells, resulting in local alteration of polar auxin distribution. Furthermore, we show that exogenous VLCFAs rescue lateral root organogenesis and polar auxin distribution, indicating their direct involvement in these processes. Based on these data, we propose that PAS1 acts as a molecular scaffold for the fatty acid elongase complex in the endoplasmic reticulum and that the resulting VLCFAs are required for polar auxin transport and tissue patterning during plant development.


The Plant Cell | 2011

Sphingolipids Containing Very-Long-Chain Fatty Acids Define a Secretory Pathway for Specific Polar Plasma Membrane Protein Targeting in Arabidopsis

Jonathan E. Markham; Diana Molino; Lionel Gissot; Yannick Bellec; Kian Hématy; Jessica Marion; Katia Belcram; Jean Christophe Palauqui; Béatrice Satiat-Jeunemaitre; Jean Denis Faure

This study shows that Arabidopsis has two classes of ceramide synthases discriminating acyl chain length and also that very-long-acyl-chain sphingolipids are required for polar auxin transport in particular during lateral root emergence. These lipids define a secretory pathway with specific endomembrane compartments and polar auxin transport protein cargoes. Sphingolipids are a class of structural membrane lipids involved in membrane trafficking and cell polarity. Functional analysis of the ceramide synthase family in Arabidopsis thaliana demonstrates the existence of two activities selective for the length of the acyl chains. Very-long-acyl-chain (C > 18 carbons) but not long-chain sphingolipids are essential for plant development. Reduction of very-long-chain fatty acid sphingolipid levels leads in particular to auxin-dependent inhibition of lateral root emergence that is associated with selective aggregation of the plasma membrane auxin carriers AUX1 and PIN1 in the cytosol. Defective targeting of polar auxin carriers is characterized by specific aggregation of Rab-A2a– and Rab-A1e–labeled early endosomes along the secretory pathway. These aggregates correlate with the accumulation of membrane structures and vesicle fragmentation in the cytosol. In conclusion, sphingolipids with very long acyl chains define a trafficking pathway with specific endomembrane compartments and polar auxin transport protein cargoes.


Journal of Biological Chemistry | 2006

The C terminus of the immunophilin PASTICCINO1 is required for plant development and for interaction with a NAC-like transcription factor

Cybelle Smyczynski; François Roudier; Lionel Gissot; Emilie Vaillant; Olivier Grandjean; Halima Morin; Thimoté Masson; Yannick Bellec; Danny Geelen; Jean-Denis Faure

PASTICCINO1 (PAS1) is a high molecular weight FK506-binding protein (FKBP) involved in the control of cell proliferation and differentiation during plant development. Mutations in the C-terminal region of PAS1 result in severe developmental defects. We show here that the C-terminal domain of PAS1 controls the subcellular distribution of this protein. We also demonstrated in vitro and in vivo, by Forster resonance energy transfer, that this C-terminal region is required for interaction with FAN (FKBP-associated NAC), a new member of the plant-specific family of NAC transcription factors. PAS1 and FAN are translocated into the nucleus upon auxin treatment in plant seedlings. The nuclear translocation of PAS1 is dependent on the presence of the C terminus of the protein. Finally, we showed that FAN is involved in PAS1-regulated processes because FAN overproduction partly complemented the pas1 phenotype. We suggest that PAS1 regulates the function of this NAC-like transcription factor by controlling its targeting to the nucleus upon plant cell division.


Plant Physiology | 2008

β-Subunits of the SnRK1 Complexes Share a Common Ancestral Function Together with Expression and Function Specificities; Physical Interaction with Nitrate Reductase Specifically Occurs via AKINβ1-Subunit

Cécile Polge; Mathieu Jossier; Pierre Crozet; Lionel Gissot; Martine Thomas

The SNF1/AMPK/SnRK1 kinases are evolutionary conserved kinases involved in yeast, mammals, and plants in the control of energy balance. These heterotrimeric enzymes are composed of one α-type catalytic subunit and two γ- and β-type regulatory subunits. In yeast it has been proposed that the β-type subunits regulate both the localization of the kinase complexes within the cell and the interaction of the kinases with their targets. In this work, we demonstrate that the three β-type subunits of Arabidopsis (Arabidopsis thaliana; AKINβ1, AKINβ2, and AKINβ3) restore the growth phenotype of the yeast sip1Δsip2Δgal83Δ triple mutant, thus suggesting the conservation of an ancestral function. Expression analyses, using AKINβ promoter∷β-glucuronidase transgenic lines, reveal different and specific patterns of expression for each subunit according to organs, developmental stages, and environmental conditions. Finally, our results show that the β-type subunits are involved in the specificity of interaction of the kinase with the cytosolic nitrate reductase. Together with previous cell-free phosphorylation data, they strongly support the proposal that nitrate reductase is a real target of SnRK1 in the physiological context. Altogether our data suggest the conservation of ancestral basic function(s) together with specialized functions for each β-type subunit in plants.


FEBS Journal | 2009

A neomorphic sgs3 allele stabilizing miRNA cleavage products reveals that SGS3 acts as a homodimer.

Taline Elmayan; Xavier Adenot; Lionel Gissot; Dominique Lauressergues; Isabelle Gy; Hervé Vaucheret

The putative RNA‐binding protein SUPPRESSOR OF GENE SILENCING 3 (SGS3) protects RNA from degradation before transformation into dsRNA by the RNA‐dependent RNA polymerase RDR6 during plant post‐transcriptional gene silencing and trans‐acting small interfering (siRNA) pathways. In this study, we show that SGS3 acts as a homodimer, and that the point mutation sgs3‐3 impairs post‐transcriptional gene silencing in a dominant‐negative manner through the formation of SGS3/sgs3‐3 heterodimers. Unlike complete‐loss‐of‐function sgs3 mutants, which are impaired in the accumulation of both micro RNA‐directed TAS cleavage products and mature trans‐acting siRNAs, the sgs3‐3 mutant overaccumulates TAS cleavage products and exhibits slightly reduced trans‐acting siRNA accumulation. Together, these results suggest that sgs3‐3 is a neomorphic allele that shows increased RNA protective activity, resulting in decreased RNA processing by downstream post‐transcriptional gene silencing and trans‐acting siRNA pathway components.

Collaboration


Dive into the Lionel Gissot's collaboration.

Top Co-Authors

Avatar

Yannick Bellec

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Denis Faure

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Frédérique Tellier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jessica Marion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Liên Bach

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Françoise Vilaine

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Halima Morin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge