Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lionel Gresh is active.

Publication


Featured researches published by Lionel Gresh.


The EMBO Journal | 2004

A transcriptional network in polycystic kidney disease

Lionel Gresh; Evelyne Fischer; Andreas Reimann; Myriam Tanguy; Serge Garbay; Xinli Shao; Thomas Hiesberger; Laurence Fiette; Peter Igarashi; Moshe Yaniv; Marco Pontoglio

Mutations in cystic kidney disease genes represent a major genetic cause of end‐stage renal disease. However, the molecular cascades controlling the expression of these genes are still poorly understood. Hepatocyte Nuclear Factor 1β (HNF1β) is a homeoprotein predominantly expressed in renal, pancreatic and hepatic epithelia. We report here that mice with renal‐specific inactivation of HNF1β develop polycystic kidney disease. We show that renal cyst formation is accompanied by a drastic defect in the transcriptional activation of Umod, Pkhd1 and Pkd2 genes, whose mutations are responsible for distinct cystic kidney syndromes. In vivo chromatin immunoprecipitation experiments demonstrated that HNF1β binds to several DNA elements in murine Umod, Pkhd1, Pkd2 and Tg737/Polaris genomic sequences. Our results uncover a direct transcriptional hierarchy between HNF1β and cystic disease genes. Interestingly, most of the identified HNF1β target gene products colocalize to the primary cilium, a crucial organelle that plays an important role in controlling the proliferation of tubular cells. This may explain the increased proliferation of cystic cells in MODY5 patients carrying autosomal dominant mutations in HNF1β.


The EMBO Journal | 2007

Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation

Eusebio Perdiguero; Vanessa Ruiz-Bonilla; Lionel Gresh; Lijian Hui; Esteban Ballestar; Pedro Sousa-Victor; Bernat Baeza-Raja; Mercè Jardí; Anna Bosch-Comas; Manel Esteller; Carme Caelles; Antonio Serrano; Erwin F. Wagner; Pura Muñoz-Cánoves

The p38 mitogen‐activated protein kinase (MAPK) pathway plays a critical role in skeletal muscle differentiation. However, the relative contribution of the four p38 MAPKs (p38α, p38β, p38γ and p38δ) to this process is unknown. Here we show that myoblasts lacking p38α, but not those lacking p38β or p38δ, are unable to differentiate and form multinucleated myotubes, whereas p38γ‐deficient myoblasts exhibit an attenuated fusion capacity. The defective myogenesis in the absence of p38α is caused by delayed cell‐cycle exit and continuous proliferation in differentiation‐promoting conditions. Indeed, activation of JNK/cJun was enhanced in p38α‐deficient myoblasts leading to increased cyclin D1 transcription, whereas inhibition of JNK activity rescued the proliferation phenotype. Thus, p38α controls myogenesis by antagonizing the activation of the JNK proliferation‐promoting pathway, before its direct effect on muscle differentiation‐specific gene transcription. More importantly, in agreement with the defective myogenesis of cultured p38αΔ/Δ myoblasts, neonatal muscle deficient in p38α shows cellular hyperproliferation and delayed maturation. This study provides novel evidence of a fundamental role of p38α in muscle formation in vitro and in vivo.


Developmental Cell | 2009

SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells.

Ruben Agrelo; Abdallah Souabni; Maria Novatchkova; Christian Haslinger; Martin Leeb; Vukoslav Komnenovic; Hiroyuki Kishimoto; Lionel Gresh; Terumi Kohwi-Shigematsu; Lukas Kenner; Anton Wutz

The noncoding Xist RNA triggers silencing of one of the two female X chromosomes during X inactivation in mammals. Gene silencing by Xist is restricted to a special developmental context in early embryos and specific hematopoietic precursors. Here, we show that Xist can initiate silencing in a lymphoma model. We identify the special AT-rich binding protein SATB1 as an essential silencing factor. Loss of SATB1 in tumor cells abrogates the silencing function of Xist. In lymphocytes Xist localizes along SATB1-organized chromatin and SATB1 and Xist influence each others pattern of localization. SATB1 and its homolog SATB2 are expressed during the initiation window for X inactivation in ES cells. Importantly, viral expression of SATB1 or SATB2 enables gene silencing by Xist in embryonic fibroblasts, which normally do not provide an initiation context. Thus, our data establish SATB1 as a crucial silencing factor contributing to the initiation of X inactivation.


Development | 2005

Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression

Ioan Ovidiu Sirbu; Lionel Gresh; Jacqueline Barra; Gregg Duester

Retinoic acid (RA) generated by Raldh2 in paraxial mesoderm is required for specification of the posterior hindbrain, including restriction of Hoxb1 expression to presumptive rhombomere 4 (r4). Hoxb1 expression requires 3′ and 5′ RA response elements for widespread induction up to r4 and for r3/r5 repression, but RA has previously been detected only from r5-r8, and vHnf1 is required for repression of Hoxb1 posterior to r4 in zebrafish. We demonstrate in mouse embryos that an RA signal initially travels from the paraxial mesoderm to r3, forming a boundary next to the r2 expression domain of Cyp26a1 (which encodes an RA-degrading enzyme). After Hoxb1 induction, the RA boundary quickly shifts to r4/r5, coincident with induction of Cyp26c1 in r4. A functional role for Cyp26c1 in RA degradation was established through examination of RA-treated embryos. Analysis of Raldh2–/– and vHnf1–/– embryos supports a direct role for RA in Hoxb1 induction up to r4 and repression in r3/r5, as well as an indirect role for RA in Hoxb1 repression posterior to r4 via RA induction of vHnf1 up to the r4/r5 boundary. Our findings suggest that Raldh2 and Cyp26 generate shifting boundaries of RA activity, such that r3-r4 receives a short pulse of RA and r5-r8 receives a long pulse of RA. These two pulses of RA activity function to establish expression of Hoxb1 and vHnf1 on opposite sides of the r4/r5 boundary.


PLOS Neglected Tropical Diseases | 2013

Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year.

Magelda Montoya; Lionel Gresh; Juan Carlos Mercado; Katherine L. Williams; Maria José Vargas; Gamaliel Gutierrez; Guillermina Kuan; Aubree Gordon; Angel Balmaseda; Eva Harris

Four dengue virus serotypes (DENV1-4) circulate globally, causing more human illness than any other arthropod-borne virus. Dengue can present as a range of clinical manifestations from undifferentiated fever to Dengue Fever to severe, life-threatening syndromes. However, most DENV infections are inapparent. Yet, little is known about determinants of inapparent versus symptomatic DENV infection outcome. Here, we analyzed over 2,000 DENV infections from 2004 to 2011 in a prospective pediatric cohort study in Managua, Nicaragua. Symptomatic cases were captured at the study health center, and paired healthy annual samples were examined on a yearly basis using serological methods to identify inapparent DENV infections. Overall, inapparent and symptomatic DENV infections were equally distributed by sex. The mean age of infection was 1.2 years higher for symptomatic DENV infections as compared to inapparent infections. Although inapparent versus symptomatic outcome did not differ by infection number (first, second or third/post-second DENV infections), substantial variation in the proportion of symptomatic DENV infections among all DENV infections was observed across study years. In participants with repeat DENV infections, the time interval between a first inapparent DENV infection and a second inapparent infection was significantly shorter than the interval between a first inapparent and a second symptomatic infection. This difference was not observed in subsequent infections. This result was confirmed using two different serological techniques that measure total anti-DENV antibodies and serotype-specific neutralizing antibodies, respectively. Taken together, these findings show that, in this study, age, study year and time interval between consecutive DENV infections influence inapparent versus symptomatic infection outcome, while sex and infection number had no significant effect. Moreover, these results suggest that the window of cross-protection induced by a first infection with DENV against a second symptomatic infection is approximately 2 years. These findings are important for modeling dengue epidemics and development of vaccines.


The EMBO Journal | 2005

The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation.

Lionel Gresh; Brigitte Bourachot; Andreas Reimann; Bruno Guigas; Laurence Fiette; Serge Garbay; Christian Muchardt; Louis Hue; Marco Pontoglio; Moshe Yaniv; Agnès Klochendler-Yeivin

Regulation of gene expression underlies cell differentiation and organogenesis. Both transcription factors and chromatin modifiers are crucial for this process. To study the role of the ATP‐dependent SWI/SNF chromatin‐remodeling complex in cell differentiation, we inactivated the gene encoding the core complex subunit SNF5/INI1 in the developing liver. Hepatic SNF5 deletion caused neonatal death due to severe hypoglycemia; mutant animals fail to store glycogen and have impaired energetic metabolism. The formation of a hepatic epithelium is also affected in SNF5‐deficient livers. Transcriptome analyses showed that SNF5 inactivation is accompanied by defective transcriptional activation of 70% of the genes that are normally upregulated during liver development. These include genes involved in glycogen synthesis, gluconeogenesis and cell–cell adhesion. A fraction of hepatic developmentally activated genes were normally expressed, suggesting that cell differentiation was not completely blocked. Moreover, SNF5‐deleted cells showed increased proliferation and we identified several misexpressed genes that may contribute to cell cycle deregulation in these cells. Our results emphasize the role of chromatin remodeling in the activation of cell‐type‐specific genetic programs and driving cell differentiation.


Frontiers in Immunology | 2014

Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections.

Laura Grange; Etienne Simon-Loriere; Anavaj Sakuntabhai; Lionel Gresh; Richard Paul; Eva Harris

Dengue is a major international public health concern, and the number of outbreaks has escalated greatly. Human migration and international trade and travel are constantly introducing new vectors and pathogens into novel geographic areas. Of particular interest is the extent to which dengue virus (DENV) infections are subclinical or inapparent. Not only may such infections contribute to the global spread of DENV by human migration, but also seroprevalence rates in naïve populations may be initially high despite minimal numbers of detectable clinical cases. As the probability of severe disease is increased in secondary infections, populations may thus be primed, with serious public health consequences following introduction of a new serotype. In addition, pre-existing immunity from inapparent infections may affect vaccine uptake, and the ratio of clinically apparent to inapparent infection could affect the interpretation of vaccine trials. We performed a literature search for inapparent DENV infections and provide an analytical review of their frequency and associated risk factors. Inapparent rates were highly variable, but “inapparent” was the major outcome of infection in all prospective studies. Differences in the epidemiological context and type of surveillance account for much of the variability in inapparent infection rates. However, one particular epidemiological pattern was shared by four longitudinal cohort studies: the rate of inapparent DENV infections was positively correlated with the incidence of disease the previous year, strongly supporting an important role for short-term heterotypic immunity in determining the outcome of infection. Primary and secondary infections were equally likely to be inapparent. Knowledge of the extent to which viruses from inapparent infections are transmissible to mosquitoes is urgently needed. Inapparent infections need to be considered for their impact on disease severity, transmission dynamics, and vaccine efficacy and uptake.


Emerging Infectious Diseases | 2016

Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

Jesse J. Waggoner; Lionel Gresh; Alisha Mohamed-Hadley; Gabriela Ballesteros; Maria Jose Vargas Davila; Yolanda Tellez; Malaya K. Sahoo; Angel Balmaseda; Eva Harris; Benjamin A. Pinsky

Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses.


Clinical Infectious Diseases | 2016

Viremia and Clinical Presentation in Nicaraguan Patients Infected with Zika Virus, Chikungunya Virus, and Dengue Virus

Jesse J. Waggoner; Lionel Gresh; Maria José Vargas; Gabriela Ballesteros; Yolanda Tellez; K. James Soda; Malaya K. Sahoo; Andrea Nuñez; Angel Balmaseda; Eva Harris; Benjamin A. Pinsky

Zika virus, chikungunya virus, and dengue virus result in similar clinical presentations, and coinfections may be relatively common. Accurate, multiplex diagnostics are necessary to detect and differentiate these arboviruses for patient care and epidemiologic surveillance.


Development | 2010

Hepatocyte nuclear factor 1α and β control terminal differentiation and cell fate commitment in the gut epithelium

Anna D'Angelo; Olivier Bluteau; Miguel A. Garcia-Gonzalez; Lionel Gresh; Antonia Doyen; Serge Garbay; Sylvie Robine; Marco Pontoglio

The intestinal epithelium is a complex system characterized by massive and continuous cell renewal and differentiation. In this context, cell-type-specific transcription factors are thought to play a crucial role by modulating specific transcription networks and signalling pathways. Hnf1α and β are closely related atypical homeoprotein transcription factors expressed in several epithelia, including the gut. With the use of a conditional inactivation system, we generated mice in which Hnf1b is specifically inactivated in the intestinal epithelium on a wild-type or Hnf1a−/− genetic background. Whereas the inactivation of Hnf1a or Hnf1b alone did not lead to any major intestinal dysfunction, the concomitant inactivation of both genes resulted in a lethal phenotype. Double-mutant animals had defective differentiation and cell fate commitment. The expression levels of markers of all the differentiated cell types, both enterocytes and secretory cells, were affected. In addition, the number of goblet cells was increased, whereas mature Paneth cells were missing. At the molecular level, we show that Hnf1α and β act upstream of the Notch pathway controlling directly the expression of two crucial components: Jag1 and Atoh1. We demonstrate that the double-mutant mice present with a defect in intestinal water absorption and that Hnf1α and β directly control the expression of Slc26a3, a gene whose mutations are associated with chloride diarrhoea in human patients. Our study identifies new direct target genes of the Hnf1 transcription factors and shows that they play crucial roles in both defining cell fate and controlling terminal functions in the gut epithelium.

Collaboration


Dive into the Lionel Gresh's collaboration.

Top Co-Authors

Avatar

Eva Harris

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Pontoglio

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Karla Gonzalez

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge