Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lionel Larue is active.

Publication


Featured researches published by Lionel Larue.


Oncogene | 2005

Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways

Lionel Larue; Alfonso Bellacosa

Epithelial–mesenchymal transition (EMT) is an important process during development by which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular adhesion and increased motility. Accumulating evidence points to a critical role of EMT-like events during tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. Several oncogenic pathways (peptide growth factors, Src, Ras, Ets, integrin, Wnt/β-catenin and Notch) induce EMT and a critical molecular event is the downregulation of the cell adhesion molecule E-cadherin. Recently, activation of the phosphatidylinositol 3′ kinase (PI3K)/AKT axis is emerging as a central feature of EMT. In this review, we discuss the role of PI3K/AKT pathways in EMT during development and cancer with a focus on E-cadherin regulation. Interactions between PI3K/AKT and other EMT-inducing pathways are presented, along with a discussion of the therapeutic implications of modulating EMT in order to achieve cancer control.


Cell | 2011

Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair

Salvatore Cortellino; Jinfei Xu; Mara Sannai; Robert Moore; Elena Caretti; Antonio Cigliano; Madeleine Le Coz; Karthik Devarajan; Andy Wessels; Dianne Robert Soprano; Lara K. Abramowitz; Marisa S. Bartolomei; Florian Rambow; Maria Rosaria Bassi; Tiziana Bruno; Maurizio Fanciulli; Catherine Renner; Andres J. Klein-Szanto; Yoshihiro Matsumoto; Dominique Kobi; Irwin Davidson; Christophe Alberti; Lionel Larue; Alfonso Bellacosa

DNA methylation is a major epigenetic mechanism for gene silencing. Whereas methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here, we show that either knockout or catalytic inactivation of the DNA repair enzyme thymine DNA glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific developmentally and hormonally regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair.


Cancer Cell | 2009

Oncogenic Braf Induces Melanocyte Senescence and Melanoma in Mice

Nathalie Dhomen; Js Reis-Filho; Silvy da Rocha Dias; Robert Hayward; Kay Savage; Véronique Delmas; Lionel Larue; Catrin Pritchard; Richard Marais

We show here that inducible expression of Braf(V600E) off the endogenous Braf gene in mouse melanocytes stimulates skin hyperpigmentation and the appearance of nevi harboring senescent melanocytes. Additionally, approximately 70% of Braf(V600E) mice develop melanomas that reproduce many of the cardinal histological and molecular features of human melanoma and whose cells can colonize the lungs of nude mice. We show that the tumor suppressor p16(INK4a) is not required to induce melanocyte senescence and that its loss is not required for tumor progression, although it does regulate tumor penetrance and latency. Thus, we have developed a mouse model of melanoma driven by Braf(V600E) expressed at physiological levels that reflects the genetics and pathology of the human disease.


Nature | 2005

Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression

Suzanne Carreira; Jane Goodall; Isil Aksan; S. Anna La Rocca; Marie-Dominique Galibert; Laurence Denat; Lionel Larue; Colin R. Goding

The controls that enable melanoblasts and melanoma cells to proliferate are likely to be related, but so far no key regulator of cell cycle progression specific to the melanocyte lineage has been identified. The microphthalmia-associated transcription factor Mitf has a crucial but poorly defined role in melanoblast and melanocyte survival and in differentiation. Here we show that Mitf can act as a novel anti-proliferative transcription factor able to induce a G1 cell-cycle arrest that is dependent on Mitf-mediated activation of the p21Cip1 (CDKN1A) cyclin-dependent kinase inhibitor gene. Moreover, cooperation between Mitf and the retinoblastoma protein Rb1 potentiates the ability of Mitf to activate transcription. The results indicate that Mitf-mediated activation of p21Cip1 expression and consequent hypophosphorylation of Rb1 will contribute to cell cycle exit and activation of the differentiation programme. The mutation of genes associated with melanoma, such as INK4a or BRAF that would affect either Mitf cooperation with Rb1 or Mitf stability respectively, would impair Mitf-mediated cell cycle control.


Oncogene | 2004

Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells.

Maria José Barberà; Isabel Puig; David Domı́nguez; Sylvia Julien-Grille; Sandra Peiró; Josep Baulida; Clara Francí; Shoukat Dedhar; Lionel Larue; Antonio García de Herreros

Expression of Snail transcriptional factor is a determinant in the acquisition of a mesenchymal phenotype by epithelial tumor cells. However, the regulation of the transcription of this gene is still unknown. We describe here the characterization of a human SNAIL promoter that contains the initiation of transcription and regulates the expression of this gene in tumor cells. This promoter was activated in cell lines in response to agents that induce Snail transcription and the mesenchymal phenotype, as addition of the phorbol ester PMA or overexpression of integrin-linked kinase (ILK) or oncogenes such as Ha-ras or v-Akt. Although other regions of the promoter were required for a complete stimulation by Akt or ILK, a minimal fragment (−78/+59) was sufficient to maintain the mesenchymal specificity. Activity of this minimal promoter and SNAIL RNA levels were dependent on ERK signaling pathway. NFκB/p65 also stimulated SNAIL transcription through a region located immediately upstream the minimal promoter, between −194 and −78. These results indicate that Snail transcription is driven by signaling pathways known to induce epithelial to mesenchymal transition, reinforcing the role of Snail in this process.


Oncogene | 2001

IGF-II induces rapid β-catenin relocation to the nucleus during epithelium to mesenchyme transition

Olivier G. Morali; Véronique Delmas; Robert J. Moore; Christine Jeanney; Jean Paul Thiery; Lionel Larue

The epithelium to mesenchyme transition is thought to play a fundamental role during embryonic development and tumor progression. Loss of cell–cell adhesion and modification of both cell morphology and gene expression are the main events associated with this transition. There is a large amount of evidence suggesting that growth factors can initiate these events. Yet, the connection from growth factor induction to changes in cell adhesion and morphology is largely unknown. To elucidate this connection, we have investigated the action of IGF-II on E-cadherin/β-catenin complex-mediated cell–cell adhesion and on β-catenin/TCF-3 mediated gene expression. We can show that (1) IGF-II induces a rapid epithelium to mesenchymal transition; (2) IGF1R, the receptor for IGF-II, belongs to the same membrane complex as E-cadherin and β-catenin; (3) IGF-II induces a redistribution of β-catenin from the plasma membrane to the nucleus and an intracellular sequestration and degradation of E-cadherin; (4) IGF-II induces the transcription of β-catenin/TCF-3 target genes. Based on the given case of IGF-II and E-cadherin/β-catenin complex, this study reveals the backbone of a cascade connecting growth factor signaling with cell–cell adhesion during EMT.


Journal of Cell Biology | 2006

Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells

Mariko Moriyama; Masatake Osawa; Siu-Shan Mak; Toshiyuki Ohtsuka; Norio Yamamoto; Hua Han; Véronique Delmas; Ryoichiro Kageyama; Friedrich Beermann; Lionel Larue; Shin-Ichi Nishikawa

Melanoblasts (Mbs) are thought to be strictly regulated by cell–cell interactions with epidermal keratinocytes, although the precise molecular mechanism of the regulation has been elusive. Notch signaling, whose activation is mediated by cell–cell interactions, is implicated in a broad range of developmental processes. We demonstrate the vital role of Notch signaling in the maintenance of Mbs, as well as melanocyte stem cells (MSCs). Conditional ablation of Notch signaling in the melanocyte lineage leads to a severe defect in hair pigmentation, followed by intensive hair graying. The defect is caused by a dramatic elimination of Mbs and MSCs. Furthermore, targeted overexpression of Hes1 is sufficient to protect Mbs from the elimination by apoptosis. Thus, these data provide evidence that Notch signaling, acting through Hes1, plays a crucial role in the survival of immature Mbs by preventing initiation of apoptosis.


Nature Medicine | 2012

MDM4 is a key therapeutic target in cutaneous melanoma

Agnieszka Gembarska; Flavie Luciani; Clare G Fedele; Elisabeth A. Russell; Michael Dewaele; Stephanie Villar; Aleksandra Zwolinska; Sue Haupt; Job de Lange; Dana Yip; James S. Goydos; Jody J. Haigh; Ygal Haupt; Lionel Larue; Aart G. Jochemsen; Hubing Shi; Gatien Moriceau; Roger S. Lo; Ghanem Elias Ghanem; Mark Shackleton; Federico Bernal; Jean-Christophe Marine

The inactivation of the p53 tumor suppressor pathway, which often occurs through mutations in TP53 (encoding tumor protein 53) is a common step in human cancer. However, in melanoma—a highly chemotherapy-resistant disease—TP53 mutations are rare, raising the possibility that this cancer uses alternative ways to overcome p53-mediated tumor suppression. Here we show that Mdm4 p53 binding protein homolog (MDM4), a negative regulator of p53, is upregulated in a substantial proportion (∼65%) of stage I–IV human melanomas and that melanocyte-specific Mdm4 overexpression enhanced tumorigenesis in a mouse model of melanoma induced by the oncogene Nras. MDM4 promotes the survival of human metastatic melanoma by antagonizing p53 proapoptotic function. Notably, inhibition of the MDM4-p53 interaction restored p53 function in melanoma cells, resulting in increased sensitivity to cytotoxic chemotherapy and to inhibitors of the BRAF (V600E) oncogene. Our results identify MDM4 as a key determinant of impaired p53 function in human melanoma and designate MDM4 as a promising target for antimelanoma combination therapy.


Cancer Research | 2007

Stable Overexpression of Smad7 in Human Melanoma Cells Impairs Bone Metastasis

Delphine Javelaud; Khalid S. Mohammad; Christopher McKenna; Pierrick Fournier; Flavie Luciani; Maryla Niewolna; Jocelyne André; Véronique Delmas; Lionel Larue; Theresa A. Guise; Alain Mauviel

Melanoma has a propensity to metastasize to bone, where it is exposed to high concentrations of transforming growth factor-beta (TGF-beta). Because TGF-beta promotes bone metastases from other solid tumors, such as breast cancer, we tested the role of TGF-beta in melanoma metastases to bone. 1205Lu melanoma cells, stably transfected to overexpress the natural TGF-beta/Smad signaling inhibitor Smad7, were studied in an experimental model of bone metastasis whereby tumor cells are inoculated into the left cardiac ventricle of nude mice. All mice bearing parental and mock-transfected 1205Lu cells developed osteolytic bone metastases 5 weeks post-tumor inoculation. Mice bearing 1205Lu-Smad7 tumors had significantly less osteolysis on radiographs and longer survival compared with parental and mock-transfected 1205Lu mice. To determine if the reduced bone metastases observed in mice bearing 1205Lu-Smad7 clones was due to reduced expression of TGF-beta target genes known to enhance metastases to bone from breast cancer cells, we analyzed gene expression of osteolytic factors, parathyroid hormone-related protein (PTHrP) and interleukin-11 (IL-11), the chemotactic receptor CXCR4, and osteopontin in 1205Lu cells. Quantitative reverse transcription-PCR analysis indicated that PTHrP, IL-11, CXCR4, and osteopontin mRNA steady-state levels were robustly increased in response to TGF-beta and that Smad7 and the TbetaRI small-molecule inhibitor, SB431542, prevented such induction. In addition, 1205Lu-Smad7 bone metastases expressed significantly lower levels of IL-11, connective tissue growth factor, and PTHrP. These data suggest that TGF-beta promotes osteolytic bone metastases due to melanoma by stimulating the expression of prometastatic factors via the Smad pathway. Blockade of TGF-beta signaling may be an effective treatment for melanoma metastasis to bone.


Cancer Research | 2008

Brn-2 Represses Microphthalmia-Associated Transcription Factor Expression and Marks a Distinct Subpopulation of Microphthalmia-Associated Transcription Factor–Negative Melanoma Cells

Jane Goodall; Suzanne Carreira; Laurence Denat; Dominique Kobi; Irwin Davidson; Paolo Nuciforo; Richard A. Sturm; Lionel Larue; Colin R. Goding

The origin of tumor heterogeneity is poorly understood, yet it represents a major barrier to effective therapy. In melanoma and in melanocyte development, the microphthalmia-associated transcription factor (Mitf) controls survival, differentiation, proliferation, and migration/metastasis. The Brn-2 (N-Oct-3, POU3F2) transcription factor also regulates melanoma proliferation and is up-regulated by BRAF and beta-catenin, two key melanoma-associated signaling molecules. Here, we show that Brn-2 also regulates invasiveness and directly represses Mitf expression. Remarkably, in melanoma biopsies, Mitf and Brn-2 each mark a distinct subpopulation of melanoma cells, providing a striking illustration of melanoma tumor heterogeneity with implications for melanoma therapy.

Collaboration


Dive into the Lionel Larue's collaboration.

Top Co-Authors

Avatar

Véronique Delmas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Friedrich Beermann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Florian Rambow

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Marais

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin R. Goding

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge