Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lionel Muniglia is active.

Publication


Featured researches published by Lionel Muniglia.


Current Microbiology | 2003

Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues.

Seraphim Papanikolaou; Lionel Muniglia; Isabelle Chevalot; George Aggelis; Ivan Marc

Yarrowia lipolytica was cultivated on mixtures of saturated free fatty acids (an industrial derivative of animal fat called stearin), technical glycerol (the main by-product of bio-diesel production facilities), and glucose. The utilization of technical glycerol and stearin as co-substrates resulted in higher lipid synthesis and increased citric acid production than the combination of glucose and stearin. The lipids produced contained significant amounts of stearic acid (50–70%, wt/wt) and lower ones of palmitic (15–20%, wt/wt), oleic (7–20%, wt/wt), and linoleic (2–7%, wt/wt) acid. Single-cell oil having a composition similar to cocoa-butter up to 3.4 g/L was produced, whereas in some cases relatively increased citric acid quantities (up to 14 g/L) were excreted into the growth medium. The microorganism presented a high specificity for lauric, myristic, and palmitic acid, while a discrimination for the stearic acid was observed. As a conclusion, microbial metabolism could be directed by using mixtures of inexpensive saturated fats, glycerol, and glucose as co-substrates, in order to accumulate lipids with predetermined composition, e.g., cocoa-butter equivalents.


Bioresource Technology | 2012

Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: Effect on lignin structures, delignification yields and cellulose-to-glucose conversion

Patrick Obama; Guillaume Ricochon; Lionel Muniglia; Nicolas Brosse

Enzymatic pre-hydrolysis using the industrial enzymatic cocktail Cellulyve® was assessed as a first step in a pretreatment process of Miscanthus biomass involving an aqueous-ethanol organosolv treatment. (13)C and (31)P Nuclear Magnetic Resonance and size exclusion chromatography were used to analyze the cellulose and lignin before and after treatment. It was demonstrated that despite a very low impact on the fibre structure (observed by Scanning Electron Microscopy) and composition (in terms of sugars and polyphenolics content), the enzymatic pre-treatment disrupted the lignocellulosic matrix to a considerable extend. This weakening permitted enhanced removal of lignin during organosolv pulping and increased hydrolysability of the residual cellulosic pulp for the production of monomeric glucose. Using this combined treatment, a delignification yield of 93% and an enzymatic cellulose-to-glucose conversion of 75% were obtained.


Food Chemistry | 2014

Laccase-catalysed functionalisation of chitosan by ferulic acid and ethyl ferulate: Evaluation of physicochemical and biofunctional properties

Abdulhadi Aljawish; Isabelle Chevalot; Jordane Jasniewski; Anne-Marie Revol-Junelles; Joël Scher; Lionel Muniglia

Chitosan and its derivatives functionalized by laccase-catalyzed oxidation of ferulic acid (FA) and ethyl ferulate (EF) were characterised for their physico-chemical, antioxidant and antibacterial properties. The enzymatic grafting of oxidised phenols led to FA-coloured and EF-colourless chitosan derivatives with good stability of colour and grafted phenols towards the chemical treatment by organic solvents. The efficiency of FA-products grafting onto chitosan was higher than that of EF-products. Moreover, the enzymatic grafting of phenols onto chitosan changed its morphological surface, increased its molecular weight and its viscosity. Furthermore, the chitosan derivatives presented improved antioxidant properties especially for FA-chitosan derivative when compared with chitosan with good antioxidant stability towards thermal treatment (100°C/1h). Chitosan and its derivatives showed also similar antibacterial activities and more precisely bactericidal activities. This enzymatic procedure provided chitosan derivatives with improved properties such as antioxidant activity, thermal antioxidant stability as well as the preservation of initial antibacterial activity of chitosan.


Enzyme and Microbial Technology | 2016

Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review

Nadine Karaki; Abdulhadi Aljawish; Catherine Humeau; Lionel Muniglia; Jordane Jasniewski

Polysaccharides are natural biopolymers found in almost all living organisms. They are used extensively in various industrial applications, such as food, adhesives, pharmaceuticals, and cosmetics. In many cases, their practical use is limited because of their weak solubility in neutral pH, their unsuitable hydrophilic/hydrophobic balance. In this context, chemical or enzymatic modification of their structure appears as a relevant way, to improve their properties, and thus to enlarge the field of their potential applications. Taking into account the reduction of the input energy and the environmental impact, and due to high specificity and selectivity properties, enzymatic bioprocesses have been investigated as attractive alternatives to toxic and non-specific chemical approaches. This review discusses the methods of enzymatic functionalization of four well-known polysaccharides, chitosan, cellulose, pectin and starch. Particular emphasis was placed on the methods, the reaction types and the enzymes implicated in the modification such as laccases, peroxidases lipases, tyrosinases, and transglutaminases. The impact of functionalization on the properties and the applications of polysaccharide derivatives were described.


Food Chemistry | 2014

Laccase-catalysed oxidation of ferulic acid and ethyl ferulate in aqueous medium: a green procedure for the synthesis of new compounds.

Abdulhadi Aljawish; Isabelle Chevalot; Jordane Jasniewski; Cédric Paris; Joël Scher; Lionel Muniglia

The enzymatic oxidation of ferulic acid (FA) and ethyl ferulate (EF) with Myceliophthora thermophila laccase, as biocatalyst, was performed in aqueous medium using an eco-friendly procedure to synthesize new active molecules. First, the commercial laccase was ultrafiltrated allowing for the elimination of phenolic contaminants and increasing the specific activity by a factor of 2. Then, kinetic parameters of this laccase were determined for both substrates (FA, EF), indicating a higher substrate affinity for ethyl ferulate. Additionally, enzymatic oxidation led to the synthesis of a FA-major product, exhibiting a molecular mass of 386 g/mol and a EF-major product with a molecular mass of 442 g/mol. Structural analyses by mass spectrometry allowed the identification of dimeric derivatives. The optical properties of the oxidation products showed the increase of red and yellow colours, with FA-products compared to EF-products. Additionally, enzymatic oxidation led to a decrease of antioxidant and cytotoxic activities compared to initial substrates. Consequently, this enzymatic procedure in aqueous medium could provide new compounds presenting optical, antioxidant and cytotoxic interest.


European Journal of Operational Research | 2004

Multicriteria optimization of a single-cell oil production

Lionel Muniglia; Laszlo Nandor Kiss; Christian Fonteix; Ivan Marc

Abstract The search of an experimental design based on D-optimality criterion to improve a bioprocess is proposed. The chosen model is a second-degree polynomial one selected for its satisfying precision leading to an accurate representation of non-linear systems with a low number of parameters. The optimization is carried out thanks to a real encoding diploid genetic algorithm developed within our laboratory. This study shows the setting of a multiobjective optimization procedure for bioprocesses having, in all cases, several criteria to optimize. A new approach by Pareto’s domain determination and ranking by Decision Engineering tool is presented.


Biotechnology Progress | 2016

Growth of human mesenchymal stem cells (MSCs) on films of enzymatically modified chitosan.

Abdulhadi Aljawish; Lionel Muniglia; Isabelle Chevalot

Mesenchymal stem cells (MSCs) are known to be an attractive cell source for tissue engineering and regenerative medicine. One of the main limiting steps for clinical use or biotechnological purposes is the expansion step. The research of compatible biomaterials for MSCs expansion is recently regarded as an attractive topic. The aim of this study was to create new functional biomaterial for MSCs expansion by evaluating the impact of chitosan derivative films modified by enzymatic approach. First, chitosan particles were enzymatically modified with ferulic acid (FA) or ethyl ferulate (EF) under an eco‐friendly procedure. Then, films of chitosan and its modified derivatives were prepared and evaluated by physicochemical and biological properties. Results showed that the enzymatic grafting of FA or EF onto chitosan significantly increased hydrophobic and antioxidant properties of chitosan films. The MSCs cell viability on chitosan derivative films also increased depending on the film thickness and the quantity of grafted phenols. Furthermore, the cytotoxicity test showed the absence of toxic effect of chitosan derivative films towards MSCs cells. Cell morphology showed a well attached and spread phenotype of MSCs cells on chitosan derivative films. On the other hand, due to the higher phenol content of FA‐chitosan films, their hydrophobic, antioxidant properties and cell adhesion were improved in comparison with those of EF‐chitosan films. Finally, this enzymatic process can be considered as a promising process to favor MSCs cell growth as well as to create useful biomaterials for biomedical applications especially for tissue engineering.


Archive | 2014

Enzymatic Aqueous Extraction (EAE)

Lionel Muniglia; Nathalie Claisse; Paul-Hubert Baudelet; Guillaume Ricochon

Aqueous enzymatic extraction is employed for fractionation of plant raw material and for extraction of molecules of interest in a safe manner. For many years, the improvement of industrial enzymes lead to new potentialities and new products and implies today an entire rethinking of green extraction and its economic prospects.


Enzyme and Microbial Technology | 2017

Functionalization of pectin with laccase-mediated oxidation products of ferulic acid

Nadine Karaki; Abdulhadi Aljawish; Lionel Muniglia; Sabine Bouguet-Bonnet; Sébastien Leclerc; C. Paris; Jordane Jasniewski; C. Humeau-Virot

Pectin is a natural biopolymer extracted mostly from citrus peel, sugar beet and apple pomace. In order to improve its functional properties and then to enlarge the field of its potential applications, functionalization reaction of citrus pectin with ferulic acid (FA)-oxidation products was performed in aqueous medium, at 30°C and pH7.5, in the presence of Myceliophthora thermophila laccase as biocatalyst. The conjugation between FA-oxidation products and pectin was confirmed using FTIR, UV-Vis and LC-MS analyses. The obtained results suggested that covalent bonds were between the pectin carboxyl groups and FA-oxidation products between the pectin carboxyl groups and FA-oxidation products. The determination of the total phenolic content showed that the modified pectin contained 5 times more phenols than the native pectin. In view of these results, this enzymatic procedure appears as a promising way to provide new pectin-based polymers that are expected to present new properties of interest.


Journal of Biotechnology | 2016

Laccase mediated-synthesis of hydroxycinnamoyl-peptide from ferulic acid and carnosine.

Abdulhadi Aljawish; Isabelle Chevalot; Nidal Madad; Cédric Paris; Lionel Muniglia

Carnosine (CAR) dipeptide was functionalized with ferulic acid (FA) as substrate using laccase from Myceliophtora thermophila as biocatalyst. The enzymatic reaction was performed in aqueous medium under mild conditions (pH 7.5, 30°C) as an eco-friendly procedure. Results showed that this enzymatic process led to the synthesis of two new derivatives (P1, P2), from the coupling between CAR and FA derived products. Conditions allowing a high production of P1, P2 derivatives were determined with an optimal ratio of (FA: CAR) of (1:1.6) at optimal time reaction of 8h. Under these optimal conditions, the coupling between CAR and FA-products was demonstrated, resulting in the decrease of -NH2 groups (almost 50%) as quantified via derivatization. Due to the presence of FA in the structure of these new derivatives, they exhibited higher hydrophobic property than carnosine. Structural analyses by mass spectrometry showed that P1 and P2 (FA-CAR) derivatives exhibited the same molecular mass (MM 770g/mol) containing one CAR-molecule and three FA-molecules but with different chemical structures. Furthermore, these derivatives presented improved antioxidant (almost 10 times) and anti-proliferative (almost 18 times) properties in comparison with CAR. Moreover, P1 derivative exhibited higher antioxidant and anti-proliferative activities than P2 derivative, which confirmed the different structures of P1 and P2. These results suggested that the oxidized phenols coupling with carnosine is a promising process to enhance the CAR-properties.

Collaboration


Dive into the Lionel Muniglia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joël Scher

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge