Lionel Renault
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lionel Renault.
Journal of Geophysical Research | 2012
Lionel Renault; Temel Oguz; Ananda Pascual; Guillermo Vizoso; Joaquín Tintoré
[1] In this study, for the first time at regional scale, the combined use of remote sensing data (altimetry and sea surface temperature records) provides a description of the persistent, recurrent and transient circulation regimes of the Alboran Sea circulation. The analysis of 936 altimeter-derived weekly absolute dynamic topography (ADT) and surface geostrophic current maps for 1993–2010 reveals the presence of a dominant annual signal and of two interannual modes of variability. The winter-spring phase is characterized by two stable gyral scale features; the well-known Western Anticyclonic Gyre within the western area and the Central Cyclonic Gyre, a new structure not identified in former studies, occupying the central and eastern parts of the Alboran Sea. A double anticyclonic gyre regime constitutes the stable circulation system of the summer–autumn period when the Eastern Anticyclonic Gyre is formed within the eastern Alboran basin. In this case, the Central Cyclonic Gyre is narrower and located closer to the Western Anticyclonic Gyre. They represent two stable states of the system, robust at the decadal time scale, whereas transient changes reflect perturbations on these stable states and are mainly observed at an interannual scale. The circulation variability and the gyral features development may be dynamically linked to the corresponding changes of the Gibraltar transport rates. Citation: Renault, L., T. Oguz, A. Pascual, G. Vizoso, and J. Tintore (2012), Surface circulation in the Alboran Sea (western Mediterranean) inferred from remotely sensed data, J. Geophys. Res., 117, C08009, doi:10.1029/2011JC007659.
Journal of Geophysical Research | 2009
Lionel Renault; Boris Dewitte; Mark Falvey; René D. Garreaud; Vincent Echevin; Fabrice Bonjean
The coast of central Chile is characterized by intermittent low-level along-shore southerly wind periods, called coastal jets (CJs). In this study, we take advantage of long-term satellite data to document the CJs characteristics over 2000-2007 and investigate its impact on upwelling. The CJ structure has a core some 100 km from the shore and a cross-shore scale of ∼160 km, and it usually lasts for several days (3-10). Its period of occurrence ranges from weekly to a few months. On the basis of covariance analyses between wind stress and sea surface temperature (SST) anomalies, it is found that CJ activity is seasonally phase locked with SST, with a peak season in August-October. The statistically dominant forcing mechanisms of the SST cooling during CJ event is a combination of seaward advection of temperature resulting from Ekman transport, air-sea heat exchange, and Ekman-driven coastal divergence. However, case studies of two events suggest a significant sensitivity of the dominant upwelling forcing mechanisms to the background conditions. For instance, the upward Ekman pumping associated with cyclonic wind stress curl is enhanced for the event with the CJ located more to the south. Although there are limitations associated with both the formulation of the heat budget and the data sets, the results illustrate the complexity of the upwelling forcing mechanisms in this region and the need for realistic high-resolution forcing fluxes. A CJ activity index is also proposed that takes into account the coastal upwelling variability, which can be used for teleconnection studies.
Journal of Geophysical Research | 2012
Lionel Renault; Boris Dewitte; Patrick Marchesiello; Serena Illig; Vincent Echevin; Gildas Cambon; Marcel Ramos; Orlando Astudillo; Patrick Minnis; J. Kirk Ayers
The spatial and temporal variability of nearshore winds in eastern boundary current systems affect the oceanic heat balance that drives sea surface temperature changes. In this study, regional atmospheric and oceanic simulations are used to document such processes during an atmospheric coastal jet event off central Chile. The event is well reproduced by the atmospheric model and is associated with the migration of an anomalous anticyclone in the southeastern Pacific region during October 2000. A robust feature of the simulation is a sharp coastal wind dropoff, which is insensitive to model resolution. As expected, the simulated oceanic response is a significant sea surface cooling. A surface heat budget analysis shows that vertical mixing is a major contributor to the cooling tendency both in the jet core area and in the nearshore zone where the magnitude of this term is comparable to the magnitude of vertical advection. Sensitivity experiments show that the oceanic response in the coastal area is sensitive to wind dropoff representation. This is because total upwelling, i.e., the sum of coastal upwelling and Ekman pumping, depends on the scale of wind dropoff. Because the latter is much larger than the upwelling scale, coastal wind dropoff has only a weak positive effect on vertical velocities driven by Ekman pumping but has a strong negative effect on coastal upwelling. Interestingly though, the weakening of coastal winds in the dropoff zone has a larger effect on vertical mixing than on vertical advection, with both effects contributing to a reduction of cooling.
Journal of Physical Oceanography | 2015
James C. McWilliams; Jonathan Gula; M. Jeroen Molemaker; Lionel Renault; Alexander F. Shchepetkin
AbstractA submesoscale filament of dense water in the oceanic surface layer can undergo frontogenesis with a secondary circulation that has a surface horizontal convergence and downwelling in its center. This occurs either because of the mesoscale straining deformation or because of the surface boundary layer turbulence that causes vertical eddy momentum flux divergence or, more briefly, vertical momentum mixing. In the latter case the circulation approximately has a linear horizontal momentum balance among the baroclinic pressure gradient, Coriolis force, and vertical momentum mixing, that is, a turbulent thermal wind. The frontogenetic evolution induced by the turbulent mixing sharpens the transverse gradient of the longitudinal velocity (i.e., it increases the vertical vorticity) through convergent advection by the secondary circulation. In an approximate model based on the turbulent thermal wind, the central vorticity approaches a finite-time singularity, and in a more general hydrostatic model, the c...
Journal of Physical Oceanography | 2016
Lionel Renault; M. Jeroen Molemaker; James C. McWilliams; Alexander F. Shchepetkin; Florian Lemarié; Dudley B. Chelton; Serena Illig; Alex Hall
In this study uncoupled and coupled ocean-atmosphere simulations are carried out for the California Upwelling System to assess the dynamic ocean-atmosphere interactions, viz.,the ocean surface current feedback to the atmosphere. We show the current feedback by modulating the energy transfer from the atmosphere to the ocean, controls the oceanic Eddy Kinetic Energy (EKE). For the first time, we demonstrate the current feedback has an effect on the surface stress and an counteracting effect on the wind itself. The current feedback acts as an oceanic eddy killer, reducing by half the surface EKE, and by 27% the depth-integrated EKE. On one hand, it reduces the coastal generation of eddies by weakening the surface stress and hence the near-shore supply of positive wind work (i.e., the work done by the wind on the ocean). On the other hand, by inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies. The wind response counteracts the surface stress response. It partly re-energizes the ocean in the coastal region and decreases the offshore return of energy to the atmosphere. Eddy statistics confirm the current feedback dampens the eddies and reduces their lifetime, improving the realism of the simulation. Finally, we propose an additional energy element in the Lorenz diagram of energy conversion, viz., the current-induced transfer of energy from the ocean to the atmosphere at the eddy scale.
Geophysical Research Letters | 2012
Emma Heslop; Simón Ruiz; John T. Allen; José Luís López-Jurado; Lionel Renault; Joaquín Tintoré
Recent data from an autonomous ocean glider in the Ibiza Channel (Western Mediterranean Sea) show variations in the transport volumes of water over timescales of days-weeks, as large as those previously only identifiable as seasonal or eddy driven. High frequency variation in transports of water masses has critical implications for ocean forecasting. Three potential modes of transport are proposed, which have the potential to simplify the previously observed complex pattern of flows. Restricted ‘choke points’ between ocean basins are critical locations to monitor water transport variability; the Ibiza Channel is one such ‘choke point’, where variation in the transports of water masses are known to affect the spawning grounds of commercially important fish stocks.
Journal of Climate | 2008
Boris Dewitte; Sara Purca; Serena Illig; Lionel Renault; Benjamin S. Giese
Intraseasonal equatorial Kelvin wave activity (IEKW) at a low frequency in the Pacific is investigated using the Simple Ocean Data Assimilation (SODA) oceanic reanalyses. A vertical and horizontal mode decomposition of SODA variability allows estimation of the Kelvin wave amplitude according to the most energetic baroclinic modes. A wavenumber–frequency analysis is then performed on the time series to derive indices of modulation of the IEKW at various frequency bands. The results indicate that the IEKW activity undergoes a significant modulation that projects onto baroclinic modes and is not related in a straightforward manner to the low-frequency climate variability in the Pacific. Linear model experiments corroborate that part of the modulation of the IEKW is tightly linked to change in oceanic mean state rather than to the low-frequency change of atmospheric equatorial variability.
Environmental Modelling and Software | 2014
Juan Manuel Sayol; Alejandro Orfila; Gonzalo Simarro; Daniel Conti; Lionel Renault; Anne Molcard
An operational model for tracking surface objects in the ocean is presented. Contrary to most of traditional Lagrangian Particle Tracking Algorithms, the presented approach computes the probability density function from the final position of a set of neutrally buoyant particles deployed in the flow providing the area of accumulated probability. The model departs from daily predictions of ocean surface currents, winds and waves provided by an Operational Forecasting System, and integrates the Eulerian velocities to obtain the trajectory of each particle forward in time. A random walk term is added to simulate numerical diffusivity. Several tests are performed in order to determine the optimal numerical scheme as well as the computational time step. To show the performance of the model we simulate the trajectories of a set of SVP-drifters deployed in the Balearic Sea. For these experiments, the final position of the drifters laid within the modeled contour of 50% of accumulated probability for the first 24?h forecast. An operational model for oil spill and SaR Operations is presented.The model includes advection from currents, waves and wind.Numerical diffusivity is computed from model simulations.The system provides areas of accumulated probability.The model is tested against the trajectory of three SVP-drifters.
Journal of Geophysical Research | 2013
Melanie Juzà; Lionel Renault; Simón Ruiz; Joaquín Tintoré
Received 25 June 2013; revised 31 October 2013; accepted 6 November 2013; published 6 December 2013. [1] The study of water masses worldwide (their formation, spreading, mixing, and impact on general circulation) is essential for a better understanding of the ocean circulation and variability. In this paper, the formation and main pathways of Winter Intermediate Water (WIW) in the Northwestern Mediterranean Sea (NWMED) are investigated during the winter-spring 2011 using observations and numerical simulation. The main results show that the WIW, formed along the continental shelves of the Gulf of Lion and Balearic Sea, circulates southward following five preferential pathways depending on the WIW formation site location and the oceanic conditions. WIW joins the northeastern part of the Balearic Sea, or flows along the continental shelves until joining the Balearic Current (maximum of 0.33 Sv in early-April) or further south until the Ibiza Channel entrance. Two additional trajectories, contributing to water mass exchanges with the southern part of the Western Mediterranean Sea, bring the WIW through the Ibiza and Mallorca Channels (maxima of 0.26 Sv in late-March and 0.1 Sv in early-April, respectively). The circulation of WIW over the NWMED at 50–200 m depth, its mixing and spreading over the Western Mediterranean Sea (reaching the south of the Balearic Islands, the Algero-Provencal basin, the Ligurian and the Alboran Seas) suggest that the WIW may have an impact on the ocean circulation by eddy blocking effect, exchange of water masses between north and south subbasins of Western Mediterranean Sea through the Ibiza Channel or modification of the ocean stratification.
Journal of Geophysical Research | 2016
Romain Escudier; Lionel Renault; Ananda Pascual; Pierre Brasseur; Dudley B. Chelton; Jonathan Beuvier
Three different eddy detection and tracking methods are applied to the outputs of a high-resolution simulation in the Western Mediterranean Sea in order to extract mesoscale eddy characteristics. The results are compared with the same eddy statistics derived from satellite altimetry maps over the same period. Eddy radii are around 30 km in altimetry maps whereas, in the model, they are around 20 km. This is probably due to the inability of altimetry maps to resolve the smaller mesoscale in the region. About 30 eddies are detected per day in the basin with a very heterogeneous spatial distribution and relatively short lifespans (median life around 13 days). Unlike other areas of the open ocean, they do not have a preferred direction of propagation but appear to be advected by mean currents. The number of detected eddies seems to present an annual cycle when separated according to their lifespan. With the numerical simulation, we show that anticyclones extend deeper in the water column and have a more conic shape than cyclones.