Lior Neeman
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lior Neeman.
Nature Nanotechnology | 2013
Denis Vasyukov; Yonathan Anahory; Lior Embon; Dorri Halbertal; Jo Cuppens; Lior Neeman; Amit Finkler; Yehonathan Segev; Y. Myasoedov; M. L. Rappaport; M. E. Huber; E. Zeldov
One of the critical milestones in the intensive pursuit of quantitative nanoscale magnetic imaging tools is achieving the level of sensitivity required for detecting the field generated by the spin magnetic moment {\mu}B of a single electron. Superconducting quantum interference devices (SQUIDs), which were traditionally the most sensitive magnetometers, could not hitherto reach this goal because of their relatively large effective size (of the order of 1 {\mu}m). Here we report self-aligned fabrication of nano-SQUIDs with diameters as small as 46 nm and with an extremely low flux noise of 50 n{\Phi}0/Hz^1/2, representing almost two orders of magnitude improvement in spin sensitivity, down to 0.38 {\mu}B/Hz^1/2. In addition, the devices operate over a wide range of magnetic fields with 0.6 {\mu}B/Hz^1/2 sensitivity even at 1 T. We demonstrate magnetic imaging of vortices in type II superconductor that are 120 nm apart and scanning measurements of AC magnetic fields down to 50 nT. The unique geometry of these nano-SQUIDs that reside on the apex of a sharp tip allows approaching the sample to within a few nm, which paves the way to a new class of single-spin resolved scanning probe microscopy.
Nano Letters | 2010
Amit Finkler; Yehonathan Segev; Y. Myasoedov; M. L. Rappaport; Denis Vasyukov; E. Zeldov; Jens Martin; M. E. Huber; Amir Yacoby; Lior Neeman
A nanometer-sized superconducting quantum interference device (nanoSQUID) is fabricated on the apex of a sharp quartz tip and integrated into a scanning SQUID microscope. A simple self-aligned fabrication method results in nanoSQUIDs with diameters down to 100 nm with no lithographic processing. An aluminum nanoSQUID with an effective area of 0.034 microm2 displays flux sensitivity of 1.8 x 10(-6) Phi(0)/Hz(1/2) and operates in fields as high as 0.6 T. With projected spin sensitivity of 65 micro(B)/Hz(1/2) and high bandwidth, the SQUID on a tip is a highly promising probe for nanoscale magnetic imaging and spectroscopy.
Nature Nanotechnology | 2013
Zvicka Deutsch; Lior Neeman; Dan Oron
Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging and photovoltaic light harvesting. Currently available systems, based on rare-earth-doped dielectrics, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved.
Review of Scientific Instruments | 2012
Amit Finkler; Denis Vasyukov; Yehonathan Segev; Lior Neeman; Ella O. Lachman; M. L. Rappaport; Y. Myasoedov; E. Zeldov; M. E. Huber
We describe a new type of scanning probe microscope based on a superconducting quantum interference device (SQUID) that resides on the apex of a sharp tip. The SQUID-on-tip is glued to a quartz tuning fork which allows scanning at a tip-sample separation of a few nm. The magnetic flux sensitivity of the SQUID is 1.8 μΦ(0)/√Hz and the spatial resolution is about 200 nm, which can be further improved. This combination of high sensitivity, spatial resolution, bandwidth, and the very close proximity to the sample provides a powerful tool for study of dynamic magnetic phenomena on the nanoscale. The potential of the SQUID-on-tip microscope is demonstrated by imaging of the vortex lattice and of the local ac magnetic response in superconductors.
Nano Letters | 2015
Shaked Rosenne; Eran Grinvald; Elijah Shirman; Lior Neeman; Sounak Dutta; Omri Bar-Elli; Regev Ben-Zvi; Eitan Oksenberg; Petr Milko; Vyacheslav Kalchenko; Haim Weissman; Dan Oron; Boris Rybtchinski
Facile molecular self-assembly affords a new family of organic nanocrystals that, unintuitively, exhibit a significant nonlinear optical response (second harmonic generation, SHG) despite the relatively small molecular dipole moment of the constituent molecules. The nanocrystals are self-assembled in aqueous media from simple monosubstituted perylenediimide (PDI) molecular building blocks. Control over the crystal dimensions can be achieved via modification of the assembly conditions. The combination of a simple fabrication process with the ability to generate soluble SHG nanocrystals with tunable sizes may open new avenues in the area of organic SHG materials.
ACS Nano | 2015
Omri Bar-Elli; Eran Grinvald; Noga Meir; Lior Neeman; Dan Oron
Nonlinear optical processes can be dramatically enhanced via the use of localized surface plasmon modes in metal nanoparticles. Here we show how more elaborate structures, based on shape-controlled Au/Cu2O core/shell nanostructures, enable further enhancement of the nanoparticle third-harmonic scattering cross-section. The semiconducting component takes a twofold role in this structure, both providing a knob to tune the resonant frequency of the gold plasmon and providing resonant enhancement by virtue of its excitonic states. The advantages and deficiencies of using such core/shell metal/semiconductor structures are discussed.
Nano Letters | 2017
Lior Neeman; Regev Ben-Zvi; Katya Rechav; Ronit Popovitz-Biro; Dan Oron; Ernesto Joselevich
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.
Journal of Physics: Conference Series | 2012
Amit Finkler; Denis Vasyukov; Y Segev; Lior Neeman; Yonathan Anahory; Y. Myasoedov; M. L. Rappaport; M. E. Huber; J Martin; Amir Yacoby; E. Zeldov
We present a SQUID of novel design, which is fabricated on the tip of a pulled quartz tube in a simple 3-step evaporation process without need for any additional processing, patterning, or lithography. The resulting devices have SQUID loops with typical diameters in the range 75–300 nm. They operate in magnetic fields up to 0.6 T and have flux sensitivity of 1.8 μΦ0/Hz1/2 and magnetic field sensitivity of 10−7 T/Hz1/2, which corresponds to a spin sensitivity of 65 μB/Hz1/2 for aluminum SQUIDs. The shape of the tip and the small area of the SQUID loop, together with its high sensitivity, make our device an excellent tool for scanning SQUID microscopy: With the SQUID-on-tip glued to a tine of a quartz tuning fork, we have succeeded in obtaining magnetic images of a patterned niobium film and of vortices in a superconducting film in a magnetic field.
Journal of Materials Chemistry C | 2014
Oded Nahor; Tamar Segal-Peretz; Lior Neeman; Dan Oron; Gitti L. Frey
The organic–inorganic interfacial chemical composition and interaction have a critical influence on the performance of corresponding hybrid photovoltaic devices. Such interfaces have been shown to be controlled by using surfactants to promote contact between the organic electron-donating conjugated polymer species and the inorganic electron-accepting metal oxides. However, the location of the surfactant at the organic–inorganic interface often hinders donor–acceptor charge transfer and limits the device performance. In this study we have replaced the conventional surfactant with an optically and electronically active amphiphilic polythiophene that both compatibilizes the conjugated polymer and metal oxide, and plays an active role in the charge generation process. Specifically, a polythiophene with hydrophilic urethane side-groups allows the formation of a fine continuous ZnO network in P3HT with an organic–inorganic interfacial chemical interaction and a high surface area. A combination of FTIR, absorption and photoluminescence life-time spectroscopies yields insights into the composition and nano-scale interaction of the components, while high-resolution electron microscopy reveals the morphology of the films. The control over morphology and electronic coupling at the hybrid interface is manifested in photovoltaic devices with improved performances.
Journal of Physical Chemistry C | 2014
Tamar Segal-Peretz; Justin P. Jahnke; Alexander Berenson; Lior Neeman; Dan Oron; Aaron J. Rossini; Bradley F. Chmelka; Gitti L. Frey