Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lioubov I. Brueggemann is active.

Publication


Featured researches published by Lioubov I. Brueggemann.


Journal of Pharmacology and Experimental Therapeutics | 2008

Vascular KCNQ Potassium Channels as Novel Targets for the Control of Mesenteric Artery Constriction by Vasopressin, Based on Studies in Single Cells, Pressurized Arteries, and in Vivo Measurements of Mesenteric Vascular Resistance

Alexander R. Mackie; Lioubov I. Brueggemann; Kyle K. Henderson; Aaron J. Shiels; Leanne L. Cribbs; Karie E. Scrogin; Kenneth L. Byron

Pressor effects of the vasoconstrictor hormone arginine vasopressin (AVP), observed when systemic AVP concentrations are less than 100 pM, are important for the physiological maintenance of blood pressure, and they are also the basis for therapeutic use of vasopressin to restore blood pressure in hypotensive patients. However, the mechanisms by which circulating AVP induces arterial constriction are unclear. We examined the novel hypothesis that KCNQ potassium channels mediate the physiological vasoconstrictor actions of AVP. Reverse transcriptase polymerase chain reaction revealed expression of KCNQ1, KCNQ4, and KCNQ5 in rat mesenteric artery smooth muscle cells (MASMCs). Whole-cell perforated patch recordings of voltage-sensitive K+ (Kv) currents in freshly isolated MASMCs revealed 1,3-dihydro-1-phenyl-3,3-bis(4-pyridinylmethyl)-2H-indol-2-one (linopirdine)- and 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991)-sensitive KCNQ currents that were electrophysiologically and pharmacologically distinct from other Kv currents. Suppression of KCNQ currents by AVP (100 pM) was associated with significant membrane depolarization, and it was abolished by the protein kinase C (PKC) inhibitor calphostin C (250 nM). The KCNQ channel blocker linopirdine (10 μM) inhibited KCNQ currents in MASMCs, and it induced constriction of isolated rat mesenteric arteries. The vasoconstrictor responses were not additive when combined with 30 pM AVP, and they were prevented by the L-type Ca2+ channel blocker verapamil. Ethyl-N-[2-amino-6-(4-fluorophenylmethylamino)pyridin-3-yl] carbamic acid (flupirtine) significantly enhanced KCNQ currents, and it reversed constrictor responses to 30 pM AVP. In vivo, i.v. administration of linopirdine induced a dose-dependent increase in mesenteric artery resistance and blood pressure, whereas flupirtine had the opposite effects. We conclude that physiological concentrations of AVP induce mesenteric artery constriction via PKC-dependent suppression of KCNQ currents and L-type Ca2+ channel activation in MASMCs.


Journal of Pharmacology and Experimental Therapeutics | 2006

Pharmacological and Electrophysiological Characterization of Store-operated Currents and Capacitative Ca 2+ Entry in Vascular Smooth Muscle Cells

Lioubov I. Brueggemann; Daniel R. Markun; Kyle K. Henderson; Leanne L. Cribbs; Kenneth L. Byron

Capacitative Ca2+ entry (CCE) in vascular smooth muscle cells contributes to vasoconstrictor and mitogenic effects of vasoactive hormones. In A7r5 rat aortic smooth muscle cells, measurements of cytosolic free Ca2+ concentration ([Ca2+]i) have demonstrated that depletion of intracellular Ca2+ stores activates CCE. However, there is disagreement in published studies regarding the regulation of this mechanism by the vasoconstrictor hormone [Arg8]-vasopressin (AVP). We have employed electrophysiological methods to characterize the membrane currents activated by store depletion [store-operated current (ISOC)]. Because of different recording conditions, it has not been previously determined whether ISOC corresponds to CCE measured using fura-2; nor has the channel protein responsible for CCE been identified. In the present study, the pharmacological characteristics of ISOC, including its sensitivity to blockade by 2-aminoethoxydiphenylborane, diethylstilbestrol, or micromolar Gd3+, were found to parallel the effects of these drugs on thapsigargin- or AVP-activated CCE measured under identical external ionic conditions using fura-2. Thapsigargin-stimulated ISOC was also measured in freshly isolated rat mesenteric artery smooth muscle cells (MASMC). Members of the transient receptor potential (TRP) family of nonselective cation channels, TRPC1, TRPC4, and TRPC6, were detected by reverse transcription-polymerase chain reaction and Western blot in both A7r5 cells and MASMC. TRPC1 expression was reduced in a stable A7r5 cell line expressing a small interfering RNA (siRNA) or by infection of A7r5 cells with an adenovirus expressing a TRPC1 antisense nucleotide sequence. Thapsigargin-stimulated ISOC was reduced in both the TRPC1 siRNA- and TRPC1 antisense-expressing cells, suggesting that the TRPC1 channel contributes to the ISOC/CCE pathway.


Molecular Pharmacology | 2009

Differential effects of selective cyclooxygenase-2 inhibitors on vascular smooth muscle ion channels may account for differences in cardiovascular risk profiles.

Lioubov I. Brueggemann; Alexander R. Mackie; Bharath K. Mani; Leanne L. Cribbs; Kenneth L. Byron

Celecoxib, rofecoxib, and diclofenac are clinically used cyclooxygenase-2 (COX-2) inhibitors, which have been under intense scrutiny because long-term rofecoxib (Vioxx; Merck, Whitehouse Station, NJ) treatment was found to increase the risk of adverse cardiovascular events. A differential risk profile for these drugs has emerged, but the underlying mechanisms have not been fully elucidated. We investigated the effects of celecoxib, rofecoxib, and diclofenac on ionic currents and calcium signaling in vascular smooth muscle cells (VSMCs) using patch-clamp techniques and fura-2 fluorescence and on arterial constriction using pressure myography. Celecoxib, but not rofecoxib or diclofenac, dramatically enhanced KCNQ (Kv7) potassium currents and suppressed L-type voltage-sensitive calcium currents in A7r5 rat aortic smooth muscle cells (native KCNQ currents or overexpressed human KCNQ5 currents) and freshly isolated rat mesenteric artery myocytes. The effects of celecoxib were concentration-dependent within the therapeutic concentration range, and were reversed on washout. Celecoxib, but not rofecoxib, also inhibited calcium responses to vasopressin in A7r5 cells and dilated intact or endothelium-denuded rat mesenteric arteries. A celecoxib analog, 2,5-dimethyl-celecoxib, which does not inhibit COX-2, mimicked celecoxib in its enhancement of vascular KCNQ5 currents, suppression of L-type calcium currents, and vasodilation. We conclude that celecoxib inhibits calcium responses in VSMCs by enhancing KCNQ5 currents and suppressing L-type calcium currents, which ultimately reduces vascular tone. These effects are independent of its COX-2 inhibitory actions and may explain the differential risk of cardiovascular events in patients taking different drugs of this class.


Molecular Pharmacology | 2011

Diclofenac Distinguishes among Homomeric and Heteromeric Potassium Channels Composed of KCNQ4 and KCNQ5 Subunits

Lioubov I. Brueggemann; Alexander R. Mackie; Jody L. Martin; Leanne L. Cribbs; Kenneth L. Byron

KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V0.5 values: −31, −44, and −38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels.


Journal of Biological Chemistry | 2014

Differential Protein Kinase C-Dependent Modulation of Kv7.4 and Kv7.5 Subunits of Vascular Kv7 Channels

Lioubov I. Brueggemann; Alexander R. Mackie; Leanne L. Cribbs; Jessica Freda; Abhishek Tripathi; Matthias Majetschak; Kenneth L. Byron

Background: Kv7 potassium channels are regulated by protein kinase C (PKC) and may assemble as Kv7.4/Kv7.5-heteromers. Results: Kv7.4/Kv7.5-heteromers are endogenously expressed in artery myocytes; both subunits are differentially regulated by PKC. Conclusion: Regulation of Kv7 channels by PKC depends on its subunit composition. Significance: Insights into the mechanisms controlling Kv7 currents are important to understand how membrane potential is regulated. The Kv7 family (Kv7.1–7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy

Lioubov I. Brueggemann; Priyanka P. Kakad; Robert B. Love; Julian Solway; Maria L. Dowell; Leanne L. Cribbs; Kenneth L. Byron

Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function

Abhishek Tripathi; P. Geoff Vana; Tanmay S. Chavan; Lioubov I. Brueggemann; Kenneth L. Byron; Nadya I. Tarasova; Brian F. Volkman; Vadim Gaponenko; Matthias Majetschak

Significance α1-Adrenergic receptors are important for the regulation of vascular function and are targeted clinically for blood pressure control. Here, we provide evidence that α1A/B-adrenergic receptors (AR) form heteromeric complexes with chemokine (C-X-C motif) receptor 4 (CXCR4) on the cell surface of vascular smooth muscle cells. We show that disruption of α1A/B-AR:CXCR4 heteromeric complexes inhibits α1-AR–mediated functions in vascular smooth muscle cells and that treatment with CXCR4 agonists enhances the potency of the α1-AR agonist phenylephrine to increase blood pressure. These findings extend the current understanding of the molecular mechanisms regulating α1-AR and provide an example of G protein-coupled receptor heteromerization with important functional implications. Compounds targeting the α1A/B-AR:CXCR4 interaction could provide an alternative pharmacological approach to modulating blood pressure. Recent evidence suggests that chemokine (C-X-C motif) receptor 4 (CXCR4) contributes to the regulation of blood pressure through interactions with α1-adrenergic receptors (ARs) in vascular smooth muscle. The underlying molecular mechanisms, however, are unknown. Using proximity ligation assays to visualize single-molecule interactions, we detected that α1A/B-ARs associate with CXCR4 on the cell surface of rat and human vascular smooth muscle cells (VSMC). Furthermore, α1A/B-AR could be coimmunoprecipitated with CXCR4 in a HeLa expression system and in human VSMC. A peptide derived from the second transmembrane helix of CXCR4 induced chemical shift changes in the NMR spectrum of CXCR4 in membranes, disturbed the association between α1A/B-AR and CXCR4, and inhibited Ca2+ mobilization, myosin light chain (MLC) 2 phosphorylation, and contraction of VSMC upon α1-AR activation. CXCR4 silencing reduced α1A/B-AR:CXCR4 heteromeric complexes in VSMC and abolished phenylephrine-induced Ca2+ fluxes and MLC2 phosphorylation. Treatment of rats with CXCR4 agonists (CXCL12, ubiquitin) reduced the EC50 of the phenylephrine-induced blood pressure response three- to fourfold. These observations suggest that disruption of the quaternary structure of α1A/B-AR:CXCR4 heteromeric complexes by targeting transmembrane helix 2 of CXCR4 and depletion of the heteromeric receptor complexes by CXCR4 knockdown inhibit α1-AR–mediated function in VSMC and that activation of CXCR4 enhances the potency of α1-AR agonists. Our findings extend the current understanding of the molecular mechanisms regulating α1-AR and provide an example of the importance of G protein-coupled receptor (GPCR) heteromerization for GPCR function. Compounds targeting the α1A/B-AR:CXCR4 interaction could provide an alternative pharmacological approach to modulate blood pressure.


British Journal of Pharmacology | 2011

Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen‐induced constrictor responses in rat basilar artery

Bharath K. Mani; Lioubov I. Brueggemann; Leanne L. Cribbs; Kenneth L. Byron

BACKGROUND AND PURPOSE Cerebral vasospasm is the persistent constriction of large conduit arteries in the base of the brain. This pathologically sustained contraction of the arterial myocytes has been attributed to locally elevated concentrations of vasoconstrictor agonists (spasmogens). We assessed the presence and function of KCNQ (Kv7) potassium channels in rat basilar artery myocytes, and determined the efficacy of Kv7 channel activators in relieving spasmogen‐induced basilar artery constriction.


Cell Calcium | 2009

Opposite regulation of KCNQ5 and TRPC6 channels contributes to vasopressin-stimulated calcium spiking responses in A7r5 vascular smooth muscle cells

Bharath K. Mani; Lioubov I. Brueggemann; Leanne L. Cribbs; Kenneth L. Byron

Physiologically relevant concentrations of [Arg(8)]-vasopressin (AVP) induce repetitive action potential firing and Ca(2+) spiking responses in the A7r5 rat aortic smooth muscle cell line. These responses may be triggered by suppression of KCNQ potassium currents and/or activation of non-selective cation currents. Here we examine the relative contributions of KCNQ5 channels and TRPC6 non-selective cation channels to AVP-stimulated Ca(2+) spiking using patch clamp electrophysiology and fura-2 fluorescence measurements in A7r5 cells. KCNQ5 or TRPC6 channel expression levels were suppressed by short hairpin RNA constructs. KCNQ5 knockdown resulted in more positive resting membrane potentials and induced spontaneous action potential firing and Ca(2+) spiking. However physiological concentrations of AVP induced additional depolarization and increased Ca(2+) spike frequency in KCNQ5 knockdown cells. AVP activated a non-selective cation current that was reduced by TRPC shRNA treatment or removal of external Na(+). Neither resting membrane potential nor the AVP-induced depolarization was altered by knockdown of TRPC6 channel expression. However, both TRPC6 shRNA and removal of external Na(+) delayed the onset of Ca(2+) spiking induced by 25pM AVP. These results suggest that suppression of KCNQ5 currents alone is sufficient to excite A7r5 cells, but AVP-induced activation of TRPC6 contributes to the stimulation of Ca(2+) spiking.


Journal of Cardiovascular Pharmacology | 2013

Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm

Bharath K. Mani; James O'Dowd; Lalit Kumar; Lioubov I. Brueggemann; Masey Ross; Kenneth L. Byron

Abstract: Cerebral vasospasm after subarachnoid hemorrhage (SAH) is characterized by prolonged severe constriction of the basilar artery, which often leads to ischemic brain damage. Locally elevated concentrations of spasmogenic substances induce persistent depolarization of myocytes in the basilar artery, leading to continuous influx of calcium (Ca2+) through voltage-sensitive Ca2+ channels and myocyte contraction. Potassium (K+) channel openers may have therapeutic utility to oppose membrane depolarization, dilate the arteries, and reduce ischemia. Here, we examined the involvement of vascular Kv7 K+ channels in the pathogenesis of cerebral vasospasm and tested whether Kv7 channel openers are effective therapeutic agents in a rat model of SAH. Patch-clamp experiments revealed that 3 different spasmogens (serotonin, endothelin, and vasopressin) suppressed Kv7 currents and depolarized freshly isolated rat basilar artery myocytes. These effects were significantly reduced in the presence of a Kv7 channel opener, retigabine. Retigabine (10 &mgr;M) also significantly blocked L-type Ca2+ channels, reducing peak inward currents by >50%. In the presence of a selective Kv7 channel blocker, XE991, the spasmogens did not produce additive constriction responses measured using pressure myography. Kv7 channel openers (retigabine or celecoxib) significantly attenuated basilar artery spasm in rats with experimentally induced SAH. In conclusion, we identify Kv7 channels as common targets of vasoconstrictor spasmogens and as candidates for therapeutic intervention for cerebral vasospasm.

Collaboration


Dive into the Lioubov I. Brueggemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bharath K. Mani

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Barakat

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge