Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ping Li is active.

Publication


Featured researches published by ping Li.


Current Drug Metabolism | 2014

Metabolism of flavonoids in human: a comprehensive review.

Zhongjian Chen; Shirui Zheng; Liping Li; Huidi Jiang

Flavonoids are naturally occurring polyphenols, which are widely taken in diets, supplements and herbal medicines. Epidemiological studies have shown a flavonoid-rich diet is associated with the decrease in incidence of a range of diseases. Pharmacological evidences also reveal flavonoids display anti-oxidant, anti-allergic, anti-cancer, anti-inflammatory, anti-microbial and anti-diarrheal activities. Therefore, it is critical to study the biotransformation and disposition of flavonoids in human. This review summarizes the major metabolism pathways of flavonoids in human. First, lactase-phlorizin hydrolase (LPH) and human intestinal microflora mediate the hydrolysis of flavonoid glycosides, which is recognized as the first and determinant step in the absorption of flavonoids. Second, phase II metabolic enzymes (UGTs, SULTs and COMT) dominate the metabolism of flavonoids in vivo. UGTs are the most major contributors, followed by SULTs and COMT. By contrast, phase I metabolism pathway mediated by CYPs only plays a minor role. Third, the coupling of transporters (such as BCRP and MRPs) and phase II enzymes (UGTs and SULTs) plays an important role in the disposition of flavonoids, especially in the enteroenteric and enterohepatic circulations. Thus, all the above factors should be taken into consideration when studying pharmacokinetics of flavonoids. Here we describe a comprehensive metabolism profile of flavonoids, which will enhance our understanding of the mechanisms underlying the disposition and pharmacological effects of flavonoids in vivo.


Drug Metabolism and Disposition | 2011

Role of catechol-O-methyltransferase in the disposition of luteolin in rats.

Zhongjian Chen; Meng Chen; Hao Pan; Siyuan Sun; Liping Li; Su Zeng; Huidi Jiang

Luteolin is mainly metabolized by phase II enzymes in animals and humans with glucuronidation and sulfation as the two known metabolic pathways. Although methylation of luteolin was reported previously, the structure of the methylated metabolites and the enzymes involved in the process have not been clarified. In our study, two methylated metabolites, M1 (chrysoeriol) and M2 (diosmetin), were identified in the urine after intravenous administration of luteolin to rats, and the data suggested that the methylation was mediated by catechol-O-methyltransferase (COMT). When luteolin was coadministered with a specific COMT inhibitor, entacapone, the formation of M1 and M2 was significantly reduced, whereas the plasma concentration of luteolin increased. Methylation of luteolin was also studied in vitro using rat tissue homogenates. The apparent kinetic parameters associated with the formation of M1 and M2 in vitro were estimated, and regioselectivity of methylation of luteolin was observed. In the in vitro experiment, there was a preference for the formation of M2 over M1. In contrast, accumulation of M1 was preferred in vivo in both rat plasma and urine after an intravenous dose of luteolin. In conclusion, COMT played a crucial role in the disposition of luteolin in rats. Our results indicated that the methylation pathway in rats was significantly reduced when luteolin was coadministered with a specific COMT inhibitor. Therefore, COMT-associated drug-drug interactions need be considered in the future in luteolin clinical trials because the plasma concentrations and related therapeutic effects may be altered in vivo in the presence of a COMT inhibitor.


Fitoterapia | 2012

Pharmacokinetic study of luteolin, apigenin, chrysoeriol and diosmetin after oral administration of Flos Chrysanthemi extract in rats

Zhongjian Chen; Sisi Kong; Feifeng Song; Liping Li; Huidi Jiang

Abstract Flos Chrysanthemi (the flower of Chrysanthemum morifolium Ramat.) is widely used in China as a food and traditional Chinese medicine for many diseases. Luteolin and apigenin are two main bioactive components in Flos Chrysanthemi, and chrysoeriol and diosmetin are two methylated metabolites of luteolin in vivo by cathechol-O-methyltransferase (COMT). However, there was lack of pharmacokinetic information of chrysoeriol and diosmetin after oral administration of Flos Chrysanthemi extract (FCE). The present study aimed to develop an HPLC-UV method for simultaneous determination of rat plasma concentration of luteolin, apigenin, chrysoeriol and diosmetin and utilize it in pharmacokinetic study of the four compounds after orally giving FCE to rats. The method was successfully validated and applied to the pharmacokinetic study when oral administration of FCE to rats with or without co-giving a COMT inhibitor, entacapone. Chrysoeriol and diosmetin were detected in rat plasma after oral administration of FCE and their concentrations were significantly decreased after co-giving entacapone. Furthermore, AUC of luteolin was significantly increased by entacapone, while that of chrysoeriol was decreased by entacapone, which revealed COMT might play an important role in the disposition of luteolin in rats after dosing of FCE. In conclusion, a sensitive, accurate and reproducible HPLC-UV method for simultaneous determination of luteolin, apigenin, chrysoeriol and diosmetin in rat plasma were developed, pharmacokinetics of chrysoeriol and diosmetin combined with luteolin and apigenin were characterized after oral administration of FCE to rats, which gave us more information on pharmacokinetics and potential pharmacological effects of FCE in vivo.


Journal of Agricultural and Food Chemistry | 2010

Relative contribution of small and large intestine to deglycosylation and absorption of flavonoids from Chrysanthemun morifolium extract.

Xin-Yan Lu; Dongli Sun; Zhongjian Chen; Ting Chen; Liping Li; Zheng-Hao Xu; Huidi Jiang; Su Zeng

The flower of Chrysanthemum morifolium Ramat (CM) is an established part of traditional Chinese medicine (TCM). Luteolin and apigenin flavonoids are the effective components of the CM extract (CME); however, they exist in the orally consumed CME as glycosides. The present study was carried out to determine the relative contribution of the small and large intestine to the deglycosylation and absorption of flavonoids from CME using a rat model system. The distribution of luteolin and apigenin in rat gastrointestinal (GI) luminal contents, tissues, and plasmas was assessed after the oral administration of CME. The hydrolysis and absorption of CME flavonoids in different rat GI segments were further evaluated by using in situ ligated models and cell-free extracts prepared from rat GI segments. The results demonstrated that after the oral administration of CME, the magnitude of deglycosylation in rats was surprisingly high (about 30%) in the stomach and upper intestine within the first 5 min after ingestion, and early absorption in the plasma was detected. The results from site-limited administration revealed that the stomach was the initial hydrolysis site, while the duodenum was the first effective absorption site for CME flavonoids. Diminishing microbial flora in the jejunum had no significant effect on the hydrolysis of the flavonoids from CME, but the cell-free extracts prepared from rat GI segments demonstrated a strong ability to hydrolyze. Taken together, our findings suggest that enteric disposition contributes to the pharmacokinetics of luteolin and apigenin after oral administration of CME. Moreover, the upper digestive tract plays a key role in the hydrolysis and absorption of flavonoids in CME.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine.

Siyuan Sun; Kai Wang; Hongmei Lei; Liping Li; Meijuan Tu; Su Zeng; Hui Zhou; Huidi Jiang

Organic cation transporter 2 (OCT2) and 3 (OCT3) are low-affinity, high-capacity transporters (uptake-2) expressed in the central nervous system (CNS) and other major organs. Proven to be essential components in the CNS functions, OCT2 and OCT3 are suggested as potential targets of antidepressant therapeutics recently. Berberine, an active constituent derived from many medicinal plants, such as Coptis chinensis, has been reported to possess antidepressant-like action in the tail suspension test and forced swim test with elevated serotonin/norepinephrine/dopamine (5-HT/NE/DA) level in mouse brain; however the mechanism has not been elucidated. In consideration of the relation between OCT2/3 and antidepressant action, and the characteristic of berberine as an organic cation, we investigated the potential involvement of OCT2 and OCT3 in the antidepressant-like action of berberine in the present study. The results in mouse brain synaptosomes demonstrated that uptake-2 inhibition might play a notable role in enhanced serotonergic and noradrenergic effects induced by berberine. The inhibitory study in transfected MDCK cells displayed that berberine is a potent inhibitor of human OCT2 and OCT3, and its IC50 values for inhibition of transporter-mediated 5-HT/NE uptake are between 0.1 and 1μM. In addition, berberine was identified as a substrate of hOCT2 and hOCT3. In conclusion, berberine is a substrate and an inhibitor of hOCT2 and hOCT3, and its inhibition on OCT2- and OCT3-mediated 5-HT and NE uptake may contribute to the enhanced monoamine neurotransmission in mouse brain. It was deduced that the inhibition of OCT2 and OCT3 probably be implicated in the mechanism of antidepressant-like action.


Toxicology | 2013

Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity

Meijuan Tu; Siyuan Sun; Kai Wang; Xueying Peng; Ruihan Wang; Liping Li; Su Zeng; Hui Zhou; Huidi Jiang

Monocrotaline (MCT) is a kind of toxic retronecine-type pyrrolizidine alkaloids (PAs) from plants of Crotalaria, which can be bio-activated by cytochrome P450 (CYP) enzymes in liver and then induce hepatotoxicity. Since CYPs are localized in the endoplasmic reticulum, the influx of MCT to the liver is the key step for its hepatotoxicity. The objective of the present study was to investigate the role of organic cation transporter 1 (OCT1), a transporter mainly expressed in liver, in the uptake of MCT and in hepatotoxicity induced by MCT. The results revealed that MCT markedly inhibited the uptake of 1-methyl-4-phenylpyridinium (MPP(+)), an OCT1 substrate, in Madin-Darby canine kidney (MDCK) cells stably expressing human OCT1 (MDCK-hOCT1) with the IC50 of 5.52±0.56μM. The uptake of MCT was significantly higher in MDCK-hOCT1 cells than in MDCK-mock cells, and MCT uptake in MDCK-hOCT1 cells followed Michaelis-Menten kinetics with the Km and Vmax values of 25.0±6.7μM and 266±64pmol/mg protein/min, respectively. Moreover, the OCT1 inhibitors, such as quinidine, d-tetrahydropalmatine (d-THP), obviously inhibited the uptake of MCT in MDCK-hOCT1 cells and isolated rat primary hepatocytes, and attenuated the viability reduction and LDH release of the primary cultured rat hepatocytes caused by MCT. In conclusion, OCT1 mediates the hepatic uptake of MCT and may play an important role in MCT induced-hepatotoxicity.


Chirality | 2013

Stereoselective Interaction Between Tetrahydropalmatine Enantiomers and CYP Enzymes in Human Liver Microsomes

Siyuan Sun; Yuqing Wang; Liping Li; Lu Wang; Su Zeng; Hui Zhou; Huidi Jiang

Tetrahydropalmatine (THP), with one chiral center, is an alkaloid that possesses analgesic and many other pharmacological actives. The aim of the present study is to investigate stereoselective metabolism of THP enantiomers in human liver microsomes (HLM) and elucidate which cytochrome P450 (CYP) isoforms contribute to the stereoselective metabolism in HLM. Additionally, the inhibitions of THP enantiomers on activity of CYP enzymes are also investigated. The results demonstrated that (+)-THP was preferentially metabolized by HLM. Ketoconazole (inhibitor of CYP3A4/5) inhibited metabolism of (-)-THP or (+)-THP at same degree, whereas the inhibition of fluvoxamine (inhibitor of CYP1A2) on metabolism of (+)-THP was greater than that of (-)-THP; moreover, the metabolic rate of (+)-THP was 5.3-fold of (-)-THP in recombinant human CYP1A2. Meanwhile, THP enantiomers did not show obvious inhibitory effect on the activity of various CYP isoforms (CYP1A2, 2A6, 2C8, 2C9, 2C19, 2E1, and 3A4/5), whereas (-)-THP, but not (+)-THP, significantly inhibited the activity of CYP2D6 with the Ki value of 6.42 ± 0.38 μM. The results suggested that THP enantiomers were predominantly metabolized by CYP3A4/5 and CYP1A2 in HLM, and (+)-THP was preferentially metabolized by CYP1A2, whereas CYP3A4/5 contributed equally to metabolism of (-)-THP or (+)-THP. Besides, the inhibition of CYP2D6 by (-)-THP may cause drug-drug interaction, which should be considered.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action

Kai Wang; Siyuan Sun; Liping Li; Meijuan Tu; Huidi Jiang

Novel antidepressants or treatment strategies that may offer a more rapid onset of action, improved efficacy, and greater tolerability are in desperate need. Because current clinically utilized antidepressants, which target high-affinity transporters for serotonin and norepinephrine, fail to provide satisfactory treatment outcomes for quite a portion of patients. In recent investigations, a low-affinity but high-capacity transporter organic cation transporter 2 (OCT2, SLC22A2) has been proposed as an important postsynaptic determinant of aminergic tonus and mood-related behaviors, a complementary system to the high-affinity transporters. In order to evaluate whether OCT2 inhibition may at least in part contribute to the pharmacological effects of antidepressants, several typical antidepressant compounds of various mechanism categories were employed to inhibit OCT2 activity in cells stably overexpressing OCT2. The tested antidepressant agents included selective serotonin reuptake inhibitors (SSRIs, fluoxetine, sertraline and paroxetine), tricyclic antidepressants (TCAs, amitriptyline, imipramine, desipramine), monoamine oxidase inhibitor (MAOI, moclobemide), serotonin-norepinephrine reuptake inhibitor (SNRI, venlafaxine) and reported antidepressant alkaloid piperine. Piperine was screened through synaptosomes before cell experiments, without the interference of monoamine oxidase. All of the nine antidepressant compounds showed moderate inhibitory effects on OCT2-mediated metformin, serotonin and/or norepinephrine uptake. Sertraline and desipramine tended to inhibit OCT2 activity via a competitive mechanism. The fact could be easily belied, since passive diffusion dominated the influx process. It remains to be seen whether OCT2 inhibition plays a role to the overall therapeutic effects in clinical practice.


Xenobiotica | 2012

The two enantiomers of tetrahydropalmatine are inhibitors of P-gp, but not inhibitors of MRP1 or BCRP

Siyuan Sun; Zhongjian Chen; Liping Li; Dongli Sun; Ye Tian; Hao Pan; Huichang Bi; Min Huang; Su Zeng; Huidi Jiang

Tetrahydropalmatine (THP), with one chiral centre, is one of the major constituents of Rhizoma corydalis. THP is considered to possess analgesic, sedative, hypnotic actions and cardiac protection. The aim of this study was to elucidate the stereoselective interaction between THP and ABC transporters. The present study investigated three most important ABC transporters, including P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP). The intracellular accumulation and bidirectional transport suggested THP enantiomers were inhibitors of P-gp, but not of MRP1 or BCRP. The IC50 values of (−)-THP and (+)-THP on rhodamine 123 (P-gp substrate) efflux were 48.6 and 20.0 µM, respectively, which showed obvious stereoselective difference. In the bidirectional transport, THP enantiomers showed high passive permeability and the contribution of P-gp could not be testified. The western blot and real-time RT-PCR assays showed that THP enantiomers reduced the protein expression of P-gp, but did not affect its mRNA expression. In in vitro cytotoxicity test, THP enantiomers showed the potential of increasing the cytotoxicity of doxorubicin in P-gp-mediated multidrug resistant tumour cells. The present study showed the stereoselective interaction between THP enantiomers and P-gp, which should be considered in clinical practice.


Chirality | 2012

Stereoselective metabolism of tetrahydropalmatine enantiomers in rat liver microsomes.

Ming Zhao; Liping Li; Dong-Li Sun; Siyuan Sun; Shan-Ding Huang; Su Zeng; Huidi Jiang

Tetrahydropalmatine (THP), with one chiral center, is an active alkaloid ingredient in Rhizoma Corydalis. The aim of the present paper is to study whether THP enantiomers are metabolized stereoselectively in rat, mouse, dog, and monkey liver microsomes, and then, to elucidate which Cytochrome P450 (CYP) isoforms are predominately responsible for the stereoselective metabolism of THP enantiomers in rat liver microsomes (RLM). The results demonstrated that (+)-THP was preferentially metabolized by liver microsomes from rats, mice, dogs, and monkeys, and the intrinsic clearance (Cl(int)) ratios of (+)-THP to (-)-THP were 2.66, 2.85, 4.24, and 1.67, respectively. Compared with the metabolism in untreated RLM, the metabolism of (-)-THP and (+)-THP was significantly increased in dexamethasone (Dex)-induced and β-naphthoflavone (β-NF)-induced RLM; meanwhile, the Cl(int) ratios of (+)-THP to (-)-THP in Dex-induced and β-NF-induced RLM were 5.74 and 0.81, respectively. Ketoconazole had stronger inhibitory effect on (+)-THP than (-)-THP, whereas fluvoxamine had stronger effect on (-)-THP in untreated and Dex-induced or β-NF-induced RLM. The results suggested that THP enantiomers were predominately metabolized by CYP3A1/2 and CYP1A2 in RLM, and CYP3A1/2 preferred to metabolize (+)-THP, whereas CYP1A2 preferred (-)-THP.

Collaboration


Dive into the ping Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge