Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liqi Xie is active.

Publication


Featured researches published by Liqi Xie.


Journal of Proteomics | 2012

A novel quantitative proteomics workflow by isobaric terminal labeling.

Shu-Jun Yang; Aiying Nie; Lei Zhang; Guoquan Yan; Jun Yao; Liqi Xie; Haojie Lu; Pengyuan Yang

Quantification by series of b, y fragment ion pairs generated from isobaric-labeled peptides in MS2 spectra has recently been considered an accurate strategy in quantitative proteomics. Here we developed a novel MS2 quantification approach named quantitation by isobaric terminal labeling (QITL) by coupling (18)O labeling with dimethylation. Trypsin-digested peptides were labeled with two (16)O or (18)O atoms at their C-termini in H(2)(16)O or H(2)(18)O. After blocking all ε-amino groups of lysines through guanidination, the N-termini of the peptides were accordingly labeled with formaldehyde-d(2) or formaldehyde. These indistinguishable, isobaric-labeled peptides in MS1 spectra produce b, y fragment ion pairs in the whole mass range of MS2 spectra that can be used for quantification. In this study, the feasibility of QITL was first demonstrated using standard proteins. An accurate and reproducible quantification over a wide dynamic range was achieved. Then, complex rat liver samples were used to verify the applicability of QITL for large-scale quantitative analysis. Finally, QITL was applied to profile the quantitative proteome of hepatocellular carcinoma (HCC) and adjacent non-tumor liver tissues. Given its simplicity, low-cost, and accuracy, QITL can be widely applied in biological samples (cell lines, tissues, and body fluids, etc.) for quantitative proteomic research.


Journal of Proteome Research | 2013

First proteomic exploration of protein-encoding genes on chromosome 1 in human liver, stomach, and colon.

Songfeng Wu; Ning Li; Jie Ma; Huali Shen; Dahai Jiang; Cheng Chang; Chengpu Zhang; Liwei Li; Hongxing Zhang; Jing Jiang; Zhongwei Xu; Lingyan Ping; Tao Chen; Wei Zhang; Tao Zhang; Xiaohua Xing; Tailong Yi; Yanchang Li; Fengxu Fan; Xiaoqian Li; Fan Zhong; Q. Wang; Yang Zhang; Bo Wen; Guoquan Yan; Liang Lin; Jun Yao; Zhilong Lin; Feifei Wu; Liqi Xie

The launch of the Chromosome-Centric Human Proteome Project provides an opportunity to gain insight into the human proteome. The Chinese Human Chromosome Proteome Consortium has initiated proteomic exploration of protein-encoding genes on human chromosomes 1, 8, and 20. Collaboration within the consortium has generated a comprehensive proteome data set using normal and carcinomatous tissues from human liver, stomach, and colon and 13 cell lines originating in these organs. We identified 12,101 proteins (59.8% coverage against Swiss-Prot human entries) with a protein false discovery rate of less than 1%. On chromosome 1, 1,252 proteins mapping to 1,227 genes, representing 60.9% of Swiss-Prot entries, were identified; however, 805 proteins remain unidentified, suggesting that analysis of more diverse samples using more advanced proteomic technologies is required. Genes encoding the unidentified proteins were concentrated in seven blocks, located at p36, q12-21, and q42-44, partly consistent with correlation of these blocks with cancers of the liver, stomach, and colon. Combined transcriptome, proteome, and cofunctionality analyses confirmed 23 coexpression clusters containing 165 genes. Biological information, including chromosome structure, GC content, and protein coexpression pattern was analyzed using multilayered, circular visualization and tabular visualization. Details of data analysis and updates are available in the Chinese Chromosome-Centric Human Proteome Database ( http://proteomeview.hupo.org.cn/chromosome/ ).


Journal of Proteome Research | 2013

Qualitative and Quantitative Expression Status of the Human Chromosome 20 Genes in Cancer Tissues and the Representative Cell Lines

Q. Wang; Bo Wen; Guang-Rong Yan; Junying Wei; Liqi Xie; Shaohang Xu; Dahai Jiang; Tingyou Wang; Liang Lin; Jin Zi; Ju Zhang; Ruo Zhou; Haiyi Zhao; Zhe Ren; Nengrong Qu; Xiaomin Lou; Haidan Sun; Chaoqin Du; Chuangbin Chen; Shenyan Zhang; Fengji Tan; Youqi Xian; Zhibo Gao; Minghui He; Longyun Chen; Xiaohang Zhao; Ping Xu; Yunping Zhu; Xing-Feng Yin; Huali Shen

Under the guidance of the Chromosome-centric Human Proteome Project (C-HPP), (1, 2) we conducted a systematic survey of the expression status of genes located at human chromosome 20 (Chr.20) in three cancer tissues, gastric, colon, and liver carcinoma, and their representative cell lines. We have globally profiled proteomes in these samples with combined technology of LC-MS/MS and acquired the corresponding mRNA information upon RNA-seq and RNAchip. In total, 323 unique proteins were identified, covering 60% of the coding genes (323/547) in Chr.20. With regards to qualitative information of proteomics, we overall evaluated the correlation of the identified Chr.20 proteins with target genes of transcription factors or of microRNA, conserved genes and cancer-related genes. As for quantitative information, the expression abundances of Chr.20 genes were found to be almost consistent in both tissues and cell lines of mRNA in all individual chromosome regions, whereas those of Chr.20 proteins in cells are different from tissues, especially in the region of 20q13.33. Furthermore, the abundances of Chr.20 proteins were hierarchically evaluated according to tissue- or cancer-related distribution. The analysis revealed several cancer-related proteins in Chr.20 are tissue- or cell-type dependent. With integration of all the acquired data, for the first time we established a solid database of the Chr.20 proteome.


Journal of Proteome Research | 2013

Proteome atlas of human chromosome 8 and its multiple 8p deficiencies in tumorigenesis of the stomach, colon, and liver

Yang Zhang; Guoquan Yan; Linhui Zhai; Shaohang Xu; Huali Shen; Jun Yao; Feifei Wu; Liqi Xie; Hailin Tang; Hongxiu Yu; Mingqi Liu; Pengyuan Yang; Ping Xu; Chengpu Zhang; Liwei Li; Cheng Chang; Ning Li; Songfeng Wu; Yunping Zhu; Q. Wang; Bo Wen; Liang Lin; Yinzhu Wang; Guiyan Zheng; Lanping Zhou; Haojie Lu; Siqi Liu; Fuchu He; Fan Zhong

Chromosome 8, a medium-length euchromatic unit in humans that has an extraordinarily high mutation rate, can be detected not only in evolution but also in multiple mutant diseases, such as tumorigenesis, and further invasion/metastasis. The Chromosome-Centric Human Proteome Project of China systematically profiles the proteomes of three digestive organs (i.e., stomach, colon, and liver) and their corresponding carcinoma tissues/cell lines according to a chromosome organizational roadmap. By rigorous standards, we have identified 271 (38.7%), 330 (47.1%), and 325 (46.4%) of 701 chromosome 8-coded proteins from stomach, colon, and liver samples, respectively, in Swiss-Prot and observed a total coverage rate of up to 58.9% by 413 identified proteins. Using large-scale label-free proteome quantitation, we also found some 8p deficiencies, such as the presence of 8p21-p23 in tumorigenesis of the above-described digestive organs, which is in good agreement with previous reports. To our best knowledge, this is the first study to have verified these 8p deficiencies at the proteome level, complementing genome and transcriptome data.


Proteomics | 2015

ITMSQ: A software tool for N‐ and C‐terminal fragment ion pairs based isobaric tandem mass spectrometry quantification

Liqi Xie; Lei Zhang; Aiying Nie; Guoquan Yan; Jun Yao; Yang Zhang; Pengyuan Yang; Haojie Lu

Tandem MS (MS2) quantification using the series of N‐ and C‐terminal fragment ion pairs generated from isobaric‐labelled peptides was recently considered an accurate strategy in quantitative proteomics. However, the presence of multiplexed terminal fragment ion in MS2 spectra may reduce the efficiency of peptide identification, resulting in lower identification scores or even incorrect assignments. To address this issue, we developed a quantitative software tool, denoted isobaric tandem MS quantification (ITMSQ), to improve N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantification. A spectrum splitting module was designed to separate the MS2 spectra from different samples, increasing the accuracy of both identification and quantification. ITMSQ offers a convenient interface through which parameters can be changed along with the labelling method, and the result files and all of the intermediate files can be exported. We performed an analysis of in vivo terminal amino acid labelling labelled HeLa samples and found that the numbers of quantified proteins and peptides increased by 13.64 and 27.52% after spectrum splitting, respectively. In conclusion, ITMSQ provides an accurate and reliable quantitative solutionfor N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantitative methods.


Nature Communications | 2017

VHL deficiency augments anthracycline sensitivity of clear cell renal cell carcinomas by down-regulating ALDH2.

Yao-Hui Gao; Zhao-Xia Wu; Liqi Xie; Cai-Xia Li; Yu-Qin Mao; Yantao Duan; Bing Han; San-Feng Han; Yun Yu; Haojie Lu; Pengyuan Yang; Tian-Rui Xu; Jing-Lin Xia; Guo-Qiang Chen; L.W. Wang

The von Hippel-Lindau (VHL) is deficient in ∼70% of clear-cell renal cell carcinomas (ccRCC), which contributes to the carcinogenesis and drug resistance of ccRCC. Here we show that VHL-deficient ccRCC cells present enhanced cytotoxicity of anthracyclines in a hypoxia-inducible factor-independent manner. By subtractive proteomic analysis coupling with RNAi or overexpression verification, aldehyde dehydrogenase 2 (ALDH2) is found to be transcriptionally regulated by VHL and contributes to enhanced anthracyclines cytotoxicity in ccRCC cells. Furthermore, VHL regulates ALDH2 expression by directly binding the promoter of −130 bp to −160 bp to activate the transcription of hepatocyte nuclear factor 4 alpha (HNF-4α). In addition, a positive correlation is found among the protein expressions of VHL, HNF-4α and ALDH2 in ccRCC samples. These findings will deepen our understanding of VHL function and shed light on precise treatment for ccRCC patients.


Journal of Proteome Research | 2018

HST-MRM-MS: A Novel High-Sample-Throughput Multiple Reaction Monitoring Mass Spectrometric Method for Multiplex Absolute Quantitation of Hepatocellular Carcinoma Serum Biomarker

Hucong Jiang; Lei Zhang; Ying Zhang; Liqi Xie; Yi Wang; Haojie Lu

Absolute quantification of clinical biomarkers by mass spectrometry (MS) has been challenged due to low sample-throughput of current multiple reaction monitoring (MRM) methods. For this problem to be overcome, in this work, a novel high-sample-throughput multiple reaction monitoring mass spectrometric (HST-MRM-MS) quantification approach is developed to achieve simultaneous quantification of 24 samples. Briefly, triplex dimethyl reagents (L, M, and H) and eight-plex iTRAQ reagents were used to label the N- and C-termini of the Lys C-digested peptides, respectively. The triplex dimethyl labeling produces three coelute peaks in MRM traces, and the iTRAQ labeling produces eight peaks in MS2, resulting in 24 (3×8) channels in a single experiment. HST-MRM-MS has shown good accuracy ( R2 > 0.98 for absolute quantification), reproducibility (RSD < 15%), and linearity (2-3 orders of magnitude). Moreover, the novel method has been successfully applied in quantifying serum biomarkers in hepatocellular carcinoma (HCC)-related serum samples. In conclusion, HST-MRM-MS is an accurate, high-sample-throughput, and broadly applicable MS-based absolute quantification method.


Communications Biology | 2018

Activated hepatic stellate cells promote epithelial-to-mesenchymal transition in hepatocellular carcinoma through transglutaminase 2-induced pseudohypoxia

Hui Ma; Liqi Xie; Lan Zhang; Xin Yin; Hucong Jiang; Xiaoying Xie; Rong-Xin Chen; Haojie Lu; Zheng-Gang Ren

Activation of hepatic stellate cells reportedly contributes to progression of hepatocellular carcinoma (HCC). Herein, we use quantitative proteomics and ingenuity pathway analysis to show that transglutaminase 2 (TGM2) is upregulated in the course of activated hepatic stellate cells promoting epithelial-mesenchymal transition (EMT) in HCC-derived cells both in vivo and in vitro. Mechanistically, activated hepatic stellate cells promote TGM2 upregulation in HCC cells through inflammatory signalling; and TGM2-induced depletion of von Hippel-Lindau (VHL) protein, a key molecule in the degradation of hypoxia inducible factor-1a (HIF-1a) under normoxia, then causes HIF-1a to accumulate, thereby producing a pseudohypoxic state that promotes EMT in HCC cells. These findings suggest that the promotion of EMT in HCC cells by activated hepatic stellate cells is mediated by pseudohypoxia induced via TGM2/VHL/HIF-1a pathway.Hui Ma et al. report a new mechanism by which activated hepatic stellate cells promote the epithelial-to-mesenchymal transition (EMT) in hepatocellular carcinoma. They find that transglutaminase 2 is upregulated by activated hepatic stellate cells via inflammatory signalling, which leads to a pseudohypoxic state promoting EMT.


Chemistry: A European Journal | 2009

Boronic Acid Functionalized Core–Satellite Composite Nanoparticles for Advanced Enrichment of Glycopeptides and Glycoproteins

Lijuan Zhang; Yawei Xu; Hailiang Yao; Liqi Xie; Jun Yao; Haojie Lu; Pengyuan Yang


Analyst | 2014

Global in vivo terminal amino acid labeling for exploring differential expressed proteins induced by dialyzed serum cultivation

Liqi Xie; Aiying Nie; Shu-Jun Yang; Chao Zhao; Lei Zhang; Pengyuan Yang; Haojie Lu

Collaboration


Dive into the Liqi Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Q. Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge