Liqin Duan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liqin Duan.
Marine Pollution Bulletin | 2012
Huamao Yuan; Jinming Song; Xuegang Li; Ning Li; Liqin Duan
The distributions, annual sedimentation and atmospheric deposition flux of heavy metals have been studied in sediments of the South Yellow Sea (SYS), in order to evaluate their levels and pollution status. The higher concentrations of heavy metals were generally found in the central part of the SYS, which may be associated with the organic matters due to their high affinity to the metals. According to the calculated enrichment factor (EF) of the studied metals, Cd in the sediments posed a high risk to local environments, while Mn, Hg, Pb and Zn were at moderate risk levels. Sedimentation fluxes study in the SYS showed that most heavy metals were deposited in the Chinese offshore. Annual dry deposition flux of these metals indicated that the particulate heavy metals deposition via atmosphere also play an important role in biogeochemical cycles in the SYS.
Environmental Toxicology and Pharmacology | 2010
Ying Zhang; Jinming Song; Huamao Yuan; Yayan Xu; Zhipeng He; Liqin Duan
Water samples collected from Bohai Bay were determined to describe the distributions of lead, mercury, and copper in this area, indicating that mean values of the three metals were 1.63μg/L, 4.85×10(-2)μg/L, and 2.68μg/L, respectively. Only lead exceeded the first class limit of seawater quality standard in China. Then, antioxidant enzymes, lipid peroxidation, and metabolic enzymes were investigated in bivalves (Chlamys farreri), exposed to three metals at the environmental concentration levels obtained from our investigation. Significantly reduced SOD, CAT and GPx activities, in lead-exposed group were observed and resulted in obvious lipid peroxidation. In contrast, mercury and copper did not show such clear oxidative stresses. In consistent with the oxidative stress variations, exposed only to lead caused a great inhibition on EROD activity. Multi-biomarker responses in bivalve when exposed to lead at the environmentally relevant concentration in Bohai Bay suggested that lead may possess a potential risk in this area.
Journal of Hazardous Materials | 2010
Liqin Duan; Jinming Song; Yayan Xu; Xuegang Li; Ying Zhang
A geochemical study of Bohai Bay surface sediments was carried out to analyze the potential harmful element (PHE: Ge, Mo, In, Sn, Sb, Te, Tl, Bi and V) concentrations, transportation and deposition, enrichment factors and sources. Germanium, Mo, In, Sn, Sb, Te, Tl, Bi and V concentrations in the surface sediments were: 1.43-1.71, 0.52-1.43, 0.04-0.12, 2.77-4.14, 1.14-2.29, 0.027-0.085, 0.506-0.770, 0.27-0.63 and 70.35-115.90 μg/g, respectively. The distributions of total PHE concentrations, together with sequential extraction analyses, showed that the PHEs were mainly due to natural inputs from the continental weathering delivered to the bay by rivers and atmospheric transportation and deposition. However, high Mo, Sb, Te, Bi and V occurred in non-residual fractions, suggesting some anthropogenic inputs in addition to the natural inputs. Besides sources, the distributions of PHEs were influenced by the coupling of physical, chemical and biological processes. Enrichment factor (EF) was computed for each site for each element in order to assess the polluting elements and the degree of pollution at each site. Results revealed that the EFs were generally lower than 1.0, particularly for Ge, Mo, In, Sn, Tl and V; however, the EFs were higher (>1.5), particularly for Sb, Te and Bi, revealing moderate contamination.
Journal of Environmental Sciences-china | 2013
Yu Yu; Jinming Song; Xuegang Li; Huamao Yuan; Ning Li; Liqin Duan
Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss their potential uses as paleo-environment proxies and risks of P release from sediment. Total organic carbon (TOC) and leachable organic P (Lea-OP) showed high concentrations in the estuary, Zhejiang coast and offshore upwelling area. They came from both the Changjiang River and marine biological input. Biogenic silicon (BSi) exhibited a high concentration band between 123 and 124 degree E. BSi mainly came from diatom production and its concentration in the inshore area was diluted by river sediment. Total nitrogen (TN) was primarily of marine biogenic origin. Seaward decreasing trends of Fe-bound P and Al-bound P revealed their terrestrial origins. Influenced by old Huanghe sediment delivered by the Jiangsu coastal current, the maximum concentration of detrital P (Det-P) was observed in the area north of the estuary. Similar high concentrations of carbonate fluorapatite (CFA-P) and CaCO3in the southern study area suggested marine calcium-organism sources of CFA-P. TOC, TN and non-apatite P were enriched in fine sediment, and Det-P partially exhibited coarse-grain enrichment, but BSi had no correlation with sediment grain size. Different sources and governing factors made biogenic elements and P species have distinct potential uses in indicating environmental conditions. Transferable P accounted for 14%-46% of total P. In an aerobic environment, there was low risk of P release from sediment, attributed to excess Fe oxides in sediments.
Journal of Environmental Sciences-china | 2011
Sisi Xu; Jinming Song; Huamao Yuan; Xuegang Li; Ning Li; Liqin Duan; Yu Yu
Systematic studies on the changes in concentrations of petroleum hydrocarbons (PHs) and their effects on fishery species in the Bohai Sea during 1974-2004 are presented. Changes in PHs concentrations were closely related to Yellow River runoff. Concentrations of PHs accumulated in fish and shrimp increased by about 0.712 mg/kg dry weight when trophic level of fish and shrimps increased by 1. Attention should also be paid to the high PHs concentrations in mollusks along the coastal waters of the Bohai Sea. Average concentration of PHs in the adjacent coastal waters of Tianjin City during 1996-2005 decreased the population growth rates of fish, crustaceans and mollusks in the Bohai Sea by 2.58%, 6.59% and 2.33%, respectively. Therefore, PHs have significantly contributed to the decline in fisheries in the Bohai Sea, and they must be reduced to realize the sustainable fisheries.
Environmental Monitoring and Assessment | 2012
Yayan Xu; Jinming Song; Liqin Duan; Xuegang Li; Huamao Yuan; Ning Li; Peng Zhang; Ying Zhang; Sisi Xu; Mo Zhang; Xiaodan Wu; Xuebo Yin
Surface sediment samples were collected at 27 stations of Bohai Bay, North China. Sequential extractions were carried out in this study. REE were leached out from four labile fractions: Exchangeable (L1), bound to carbonates (L2), bound to Fe–Mn oxides (L3), bound to organic matter (L4), and the remainder was residual (R5). The total contents of REE fluctuate slightly in Bohai Bay, and are mainly concentrated in the middle region, showing relatively higher levels in the north than that in the south of Bohai Bay. Percentages of L1, L2, L3, L4, and R5 for REE suggest that the residual fraction accounts for the major component of REE, whereas Fe–Mn oxides also play important roles in combining labile REE. As the REE complex is not stabilized, the competition of complex could induce dissociation of the complex and redistribution of the REE in various environments. According to REE patterns and Y/Ho ratios of samples, REE are not anthropogenic or oceanic sources but riverine input, whereas suitable environment varieties can slightly affect the patterns and fractionations of REE. As powerful tracers for the variable of environment, higher anomaly of Eu and Ce in southern regions indicates a greater reduction in the condition of surface sediment in the south than that in the north of Bohai Bay.
Science of The Total Environment | 2017
Jianwei Xing; Jinming Song; Huamao Yuan; Xuegang Li; Ning Li; Liqin Duan; Xuming Kang; Qidong Wang
Atmospheric wet deposition (AWD) is an important pathway for anthropogenic and natural pollutants entering aquatic ecosystems. However, the study on the magnitudes and ecological effects of AWD of various nutrient species (nitrogen, phosphorus and silicon) on Jiaozhou Bay is scarce. To address these issues, in this study, wet deposition samples were collected at a coastline site along Jiaozhou Bay from June 2015 to May 2016. Dissolved inorganic nitrogen (DIN, including NH4-N, NO3-N and NO2-N), dissolved organic nitrogen (DON), dissolved inorganic phosphorus (DIP, i.e. PO4-P), dissolved organic phosphorus (DOP) and reactive silicate (SiO3-Si) were analyzed. The volume-weighted mean (VWM) concentrations of NH4-N, NO3-N and DON in AWD were higher compared with those of NO2-N, PO4-P, DOP and SiO3-Si. The annual influxes of NH4-N, NO3-N, NO2-N, DON, DIP, DOP, and SiO3-Si via AWD were 92.8, 54.5, 0.427, 47.5, 0.274, 0.448 and 1.73mmol·m-2·yr-1 respectively; NH4-N and DOP were the dominant species for N and P, and the roles of DON and DOP in AWD could not be neglected. Significant seasonal variations were observed in concentrations and fluxes of all nutrient species owing to the effects of rainfall, the intensities of local emission sources and the long-distance transports of natural and anthropogenic pollutants. The major sources of N, Si and P in AWD were agricultural activities, soil dust and a mixing one involving both anthropogenic and natural sources, respectively. Though AWD represents relatively low percentages of external inputs for nutrients and low contribution to primary productivity (PP) of Jiaozhou Bay, large amounts of nutrient inputs originating from sudden heavy rains may enhance PP prominently, as well as aggravate P-limitation and Si-limitation and further affect phytoplankton community structures and size-fractioned structures with the quite high DIN:DIP ratios and extremely low Si:DIN ratios in AWD.
Ecotoxicology and Environmental Safety | 2017
Xuming Kang; Jinming Song; Huamao Yuan; Liqin Duan; Xuegang Li; Ning Li; Xianmeng Liang; Baoxiao Qu
Heavy metal contamination is an essential indicator of environmental health. In this work, one sediment core was used for the analysis of the speciation of heavy metals (Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) in Jiaozhou Bay sediments with different grain sizes. The bioavailability, sources and ecological risk of heavy metals were also assessed on a centennial timescale. Heavy metals were enriched in grain sizes of < 63µm and were predominantly present in residual phases. Moreover, the mobility sequence based on the sum of the first three phases (for grain sizes of < 63µm) was Mn > Pb > Cd > Zn > Cu >Ni > Cr > As. Enrichment factors (EF) indicated that heavy metals in Jiaozhou Bay presented from no enrichment to minor enrichment. The potential ecological risk index (RI) indicated that Jiaozhou Bay had been suffering from a low ecological risk and presented an increasing trend since 1940s owing to the increase of anthropogenic activities. The source analysis indicated that natural sources were primary sources of heavy metals in Jiaozhou Bay and anthropogenic sources of heavy metals presented an increasing trend since 1940s. The principal component analysis (PCA) indicated that Cr, Mn, Ni, Cu and Pb were primarily derived from natural sources and that Zn and Cd were influenced by shipbuilding industry. Mn, Cu, Zn and Pb may originate from both natural and anthropogenic sources. As may be influenced by agricultural activities. Moreover, heavy metals in sediments of Jiaozhou Bay were clearly influenced by atmospheric deposition and river input.
Journal of Environmental Monitoring | 2010
Yayan Xu; Jinming Song; Liqin Duan; Xuegang Li; Ying Zhang; Pei-Yan Sun
In Bohai Bay sediment, two cores were collected to estimate the source of sediments, and assess the environmental changes. Sequential extractions were carried out in this study. Rare earth elements (REE) were leached out from four labile fractions: Exchangeable (L1), Bound to carbonates (L2), Bound to Fe-Mn oxides (L3), Bound to organic matter (L4), and the remainder was Residual (R5). The percentages of REE in different fractions follow the order: R5 > L3 > L2 > L4 > L1. With heavy REE depletion and no pronounced REE fractionation, NASC-normalized REE patterns of Bohai Bay sediments are quite consistent with that of Haihe River sediment, which is the key river of Bohai Bay. Y/Ho ratios of total contents are all much lower than the average value of continental crust, while Y/Ho ratios of L2 are higher than those of other fractions. Based on the patterns of REE and Y/Ho ratios of samples, sediments of Bohai Bay mainly come from terrigenous matters, which are mainly brought by Haihe River. And REE combined with carbonates may be partly inherited from anthropogenic matter. Moreover, environmental changes exert significant influences on the patterns and fractionations of REE, and they can be deduced from the characteristics of REE. Our results on the patterns and burial fluxes of REE reflect two environmental changes: Bohai Bay has been shifting towards more reducing conditions in the last one hundred years, and there was a large flood in 1939.
Marine Pollution Bulletin | 2015
Liqin Duan; Jinming Song; Yu Yu; Huamao Yuan; Xuegang Li; Ning Li
Surface and core sediments were collected to study distributions, phases and potential environmental risk of Hg and to reconstruct anthropogenic Hg change over the past one hundred years in the East China Sea (ECS). Hg contents in surface sediments displayed a decreasing gradient from the Changjiang Estuary to the outer sea. Sequential extraction analysis showed that Hg mainly existed as residual fraction (70.18% of total), and while organic matter fraction (22.96% of total) was the main component of labile fraction, indicating the strong adsorption of organic matters on Hg. Enrichment factor and sediment quality guidelines suggested that Hg in sediments of ECS were at minor enrichment and low adverse effect. Temporal distributions of total Hg content, labile fraction, burial flux and anthropogenic Hg flux showed that anthropogenic Hg input increased since the 1960s, which was related to riverine input and atmospheric transport.