Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liqiu Mo is active.

Publication


Featured researches published by Liqiu Mo.


PLOS ONE | 2011

Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Injury by Inhibiting ROS-Activated ERK1/2 and p38MAPK Signaling Pathways in PC12 Cells

Aiping Lan; Xinxue Liao; Liqiu Mo; Chuntao Yang; Zhanli Yang; Xiuyu Wang; Fen Hu; Pei-Xi Chen; Jianqiang Feng; Dongdan Zheng; Liangcan Xiao

Hydrogen sulfide (H2S) has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl2) is a well-known hypoxia mimetic agent. We have demonstrated that H2S protects against CoCl2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK), in particular, extracellular signal-regulated kinase1/2(ERK1/2) and p38MAPK are involved in the neuroprotection of H2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α), decreased cystathionine-β synthase (CBS, a synthase of H2S) expression, and increased generation of reactive oxygen species (ROS), leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP) , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H2S) or N-acetyl-L cystein (NAC), a ROS scavenger. CoCl2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK). Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively) or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK) significantly prevented CoCl2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl2-induced injuries and that H2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.


Neuroscience Letters | 2006

Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia

Wei Liu; Chu-Huai Wang; Yu Cui; Liqiu Mo; Jun-Li Zhi; Sheng-Nan Sun; Yan-Li Wang; Hui-Min Yu; Chun-Mei Zhao; Jianqiang Feng; Pei-Xi Chen

We have demonstrated that the activation of p38 mitogen-activated protein kinase (MAPK) in the spinal microglia played an essential role in the development of morphine antinociceptive tolerance. The aim of this study was to investigate whether inhibition of neuronal nitric oxide synthase (nNOS) attenuated tolerance to morphine analgesia by modulating p38 activation in the spinal microglia. It was shown that the selective inhibitor of nNOS, 7-NINA (7-Nitroindazole, sodium salt) (25 microg, i.t.) attenuated not only the development of morphine antinociceptive tolerance, but also the activation of p38 MAPK in the spinal microglia induced by chronic intrathecal administration of morphine. Our results suggest that neuronal NO signals to microglia, leading to the upregulation of microglial phospho-p38 MAPK. Such p38 MAPK activation in microglia is consistent with a potential role in the development of morphine antinociceptive tolerance. We demonstrated for the first time that the inhibition of nNOS attenuated morphine antinociceptive tolerance by reducing p38 MAPK activation in the spinal microglia.


Cellular Physiology and Biochemistry | 2013

Exogenous Hydrogen Sulfide Protects against Doxorubicin-Induced Inflammation and Cytotoxicity by Inhibiting p38MAPK/NFκB Pathway in H9c2 Cardiac Cells

Runmin Guo; Keng Wu; Jingfu Chen; Liqiu Mo; Xiaoxiao Hua; Dongdan Zheng; Pei-Xi Chen; Gang Chen; Wenming Xu; Jianqiang Feng

Background/Aim:We have demonstrated that exogenous hydrogen sulfide (H2S) protects H9c2 cardiac cells against the doxorubicin (DOX)-induced injuries by inhibiting p38 mitogen-activated protein kinase (MAPK) pathway and that the p38 MAPK/nuclear factor-κB (NF-κB) pathway is involved in the DOX-induced inflammatory response and cytotoxicity. The present study attempts to test the hypothesis that exogenous H2S might protect cardiomyocytes against the DOX-induced inflammation and cytotoxicity through inhibiting p38 MAPK/NF-κB pathway. Methods: H9c2 cardiac cells were exposed to 5µM DOX for 24 h to establish a model of DOX cardiotoxicity. The cells were pretreated with NaHS( a donor of H2S) or other drugs before exposure to DOX. Cell viability was analyzed by cell counter kit 8 ( CCK-8), The expression of NF-κB p65 and inducible nitric oxide synthase (iNOS) was detected by Western blot assay. The levels of interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-a (TNF-a) were tested by enzyme-linked immunosorbent assay (ELISA). Results: Our findings demonstrated that pretreatment of H9c2 cardiac cells with NaHS for 30 min before exposure to DOX markedly ameliorated the DOX-induced phosphorylation and nuclear translocation of NF-κB p65 subunit. Importantly, the pretreatment with NaHS significantly attenuated the p38 MAPK/NF-κB pathway-mediated inflammatory responses induced by DOX, as evidenced by decreases in the levels of IL-1ß, IL-6 and TNF-a. In addition, application of NaHS or IL-1ß receptor antagonist (IL-1Ra) or PDTC (an inhibitor of NF-κB) attenuated the DOX-induced expression of iNOS and production of nitric oxide (NO), respectively. Furthermore, IL-1Ra also dramatically reduced the DOX-induced cytotoxicity and phosphorylation of NF-κB p65. The pretreatment of H9c2 cells with N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS) prior to exposure to DOX depressed the phosphorylation of NF-κB p65 induced by DOX. Conclusion: The present study has demonstrated the new mechanistic evidence that exogenous H2S attenuates the DOX-induced inflammation and cytotoxicity by inhibiting p38 MAPK/NF-κB pathway in H9c2 cardiac cells. We also provide novel data that the interaction between NF-κB pathway and IL-1ß is important in the induction of DOX-induced inflammation and cytotoxicity in H9c2 cardiac cells.


Molecular and Cellular Biochemistry | 2012

Hydrogen sulfide protects H9c2 cells against doxorubicin-induced cardiotoxicity through inhibition of endoplasmic reticulum stress

Xiuyu Wang; Chuntao Yang; Dongdan Zheng; Liqiu Mo; Aiping Lan; Zhanli Yang; Fen Hu; Pei-Xi Chen; Xinxue Liao; Jianqiang Feng

The roles of hydrogen sulfide (H2S) and endoplasmic reticulum (ER) stress in doxorubicin (DOX)-induced cardiotoxicity are still unclear. This study aimed to dissect the hypothesis that H2S could protect H9c2 cells against DOX-induced cardiotoxicity by inhibiting ER stress. Our results showed that exposure of H9c2 cells to DOX significantly inhibited the expression and activity of cystathionine-γ-lyase (CSE), a synthetase of H2S, accompanied by the decreased cell viability and the increased reactive oxygen species (ROS) accumulation. In addition, exposure of cells to H2O2 (an exogenous ROS) mimicked the inhibitory effect of DOX on the expression and activity of CSE. Pretreatment with N-acetyl-l-cysteine (NAC) (a ROS scavenger) attenuated intracellular ROS accumulation, cytotoxicity, and the inhibition of expression and activity of CSE induced by DOX. Notably, the ER stress-related proteins, including glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were obviously upregulated in DOX-treated H9c2 cells. Pretreatment with sodium hydrosulfide (NaHS, a H2S donor) before DOX exposure markedly suppressed DOX-induced overexpressions of GRP78 and CHOP, cytotoxicity and oxidative stress. In conclusion, we have demonstrated that ROS-mediated inhibition of CSE is involved in DOX-induced cytotoxicity in H9c2 cells, and that exogenous H2S can confer protection against DOX-induced cardiotoxicity partly through inhibition of ER stress.


Molecular Medicine Reports | 2013

Activation of the p38 MAPK/NF-κB pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells.

Runmin Guo; Wenming Xu; Jiancong Lin; Liqiu Mo; Xiaoxiao Hua; Pei-Xi Chen; Keng Wu; Dongdan Zheng; Jianqiang Feng

A number of studies have demonstrated that inflammation plays a role in doxorubicin (DOX)-induced cardiotoxicity. However, the molecular mechanism by which DOX induces cardiac inflammation has yet to be fully elucidated. The present study aimed to investigate the role of the p38 mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) pathway in DOX-induced inflammation and cytotoxicity. The results of our study demonstrated that the exposure of H9c2 cardiac cells to DOX reduced cell viability and stimulated an inflammatory response, as demonstrated by an increase in the levels of interleukin-1β (IL-1β) and IL-6, as well as tumor necrosis factor-α (TNF-α) production. Notably, DOX exposure induced the overexpression of phosphorylated p38 MAPK and phosphorylation of the NF-κB p65 subunit, which was markedly inhibited by SB203580, a specific inhibitor of p38 MAPK. The inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC), a selective inhibitor of NF-κB, significantly ameliorated DOX-induced inflammation, leading to a decrease in the levels of IL-1β and IL-6, as well as TNF-α production in H9c2 cells. The pretreatment of H9c2 cells with either SB203580 or PDTC before exposure to DOX significantly attenuated DOX-induced cytotoxicity. In conclusion, our study provides novel data demonstrating that the p38 MAPK/NF-κB pathway is important in the induction of DOX-induced inflammation and cytotoxicity in H9c2 cardiac myocytes.


Molecular and Cellular Biochemistry | 2012

Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells.

Xiaobian Dong; Chuntao Yang; Dongdan Zheng; Liqiu Mo; Xiuyu Wang; Aiping Lan; Fen Hu; Pei-Xi Chen; Jianqiang Feng; Meifen Zhang; Xinxue Liao

Hydrogen sulfide (H2S) has been shown to exert cardioprotective effects. However, the roles of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in H2S-induced cardioprotection have not been completely elucidated. In this study, cobalt chloride (CoCl2), a chemical hypoxia mimetic agent, was applied to treat H9c2 cells to establish a chemical hypoxia-induced cardiomyocyte injury model. The results showed that pretreatment with NaHS (a donor of H2S) before exposure to CoCl2 attenuated the decreased cell viability, the increased apoptosis rate, the loss of mitochondrial membrane potential (ΔΨm), and the intracellular accumulation of reactive oxygen species (ROS) in H9c2 cells. Exposure of H9c2 cells to CoCl2 or hydrogen peroxide (H2O2) upregulated expression of phosphorylated (p) ERK1/2, which was reduced by pretreatment with NaHS or N-acetyl-l-cysteine, a ROS scavenger. More importantly, U0126, a selective inhibitor of ERK1/2, mimicked the above cytoprotection of H2S against CoCl2-induced injury in H9c2 cells. In conclusion, these results indicate that H2S protects H9c2 cells against chemical hypoxia-induced injury partially by inhibiting ROS-mediated activation of ERK1/2.


International Journal of Molecular Medicine | 2015

Exogenous H2S protects H9c2 cardiac cells against high glucose-induced injury and inflammation by inhibiting the activation of the NF-κB and IL-1β pathways

Wenming Xu; Jingfu Chen; Jianchong Lin; Donghong Liu; Liqiu Mo; Jianqiang Feng; Wen Wu; Dongdan Zheng

Hyperglycemia has been reported to activate the nuclear factor-κB (NF-κB) pathway. We have previously demonstrated that exogenous hydrogen sulfide (H2S) protects cardiomyocytes against high glucose (HG)-induced injury by inhibiting the activity of p38 mitogen-activated protein kinase (MAPK), which can activate the NF-κB pathway and induce interleukin (IL)-1β production. In the present study, we aimed to investigate the hypothesis that exogenous H2S protects cardiomyocytes against HG-induced injury and inflammation through the inhibition of the NF-κB/IL-1β pathway. H9c2 cardiac cells were treated with 35 mM glucose (HG) for 24 h to establish a model of HG-induced damage. Our results demonstrated that treatment of the cells with 400 µM sodium hydrogen sulfide (NaHS, a donor of H2S) or 100 µM pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) for 30 min prior to exposure to HG markedly attenuated the HG-induced increase in the expression levels of the phosphorylated (p)-NF-κB p65 subunit. Notably, pre-treatment of the H9c2 cardiac cells with NaHS or PDTC significantly suppressed the HG-induced injury, including cytotoxicity, apoptosis, oxidative stress and mitochondrial insults, as evidenced by an increase in cell viability, as well as a decrease in the number of apoptotic cells, the expression of cleaved caspase-3, the generation of reactive oxygen species (ROS) and the dissipation of mitochondrial membrane potential (MMP). In addition, pre-treatment of the cells with NaHS or PDTC ameliorated the HG-induced inflammatory response, leading to a decrease in the levels of IL-1β, IL-6 and tumor necrosis factor-α (TNF-α). Importantly, co-treatment of the H9c2 cells with 20 ng/ml IL-1 receptor antagonist (IL-1Ra) and HG markedly reduced the HG-induced increase in p-NF-κB p65 expression, cytotoxicity, the number of apoptotic cells, as well as the production of TNF-α. In conclusion, the present study presents novel mechanistic evidence that exogenous H2S protects H9c2 cardiac cells against HG-induced inflammation and injury, including cytotoxicity, apoptosis, overproduction of ROS and the dissipation of MMP, by inhibiting the NF-κB/IL-1β pathway. We also provide new data indicating that the positive interaction between the NF-κB pathway and IL-1β is critical in HG-induced injury and inflammation in H9c2 cardiac cells.


The American Journal of the Medical Sciences | 2012

Spinal MCP-1 Contributes to the Development of Morphine Antinociceptive Tolerance in Rats

Chun-Mei Zhao; Rui-Xian Guo; Fen Hu; Pei-Xi Chen; Yu Cui; Jianqiang Feng; Jin-lan Meng; Liqiu Mo; Xinxue Liao

Background:The chemokine monocyte chemoattractant protein-1 (MCP-1) has been shown to contribute to neuropathic pain. However, whether MCP-1 is involved in the development of morphine antinociceptive tolerance is incompletely understood. Methods:Morphine antinociceptive tolerance was induced by intrathecal administration of 15 &mgr;g of morphine daily for 7 days. Immunohistochemistry was used to test the changes in the morphology of spinal MCP-1 immunoreactivity and OX-42-IR. The role of MCP-1 in morphine antinociceptive tolerance is explored by hot-water tail-flick test. Results:Our findings showed that intrathecal chronic morphine exposure obviously increased MCP-1 immunoreactivity in the spinal cord. Moreover, the increased MCP-1 immunoreactivity was observed mainly in the spinal neurons. Intrathecal injections of MCP-1-neutralizing antibody significantly reduced the development of morphine antinociceptive tolerance, suggesting that spinal neuronal MCP-1 contributes to tolerance to morphine antinociception. Treatment with MCP-1-neutralizing antibody also reduced the spinal microglial activation induced by chronic morphine treatment. Conclusions:This study revealed for the first time that spinal neuronal MCP-1 is a key mediator of the spinal microglial activation and that spinal MCP-1 is involved in morphine antinociceptive tolerance. Inhibition of MCP-1 may provide a new therapy for morphine tolerance management.


Pediatric Anesthesia | 2016

Outcomes of dexmedetomidine treatment in pediatric patients undergoing congenital heart disease surgery: a meta-analysis.

Yueting Wang; Lin Lin; Ge Zhou; Xiaoxiao Hua; Liqiu Mo

Dexmedetomidine decreases cardiac complications in adults undergoing cardiovascular surgery. This systematic review assessed whether perioperative dexmedetomidine improves congenital heart disease (CHD) surgery outcomes in children.


CNS Neuroscience & Therapeutics | 2014

A Novel Role of Spinal Astrocytic Connexin 43: Mediating Morphine Antinociceptive Tolerance by Activation of NMDA Receptors and Inhibition of Glutamate Transporter‐1 in Rats

Ning Shen; Liqiu Mo; Fen Hu; Pei-Xi Chen; Rui-Xian Guo; Jianqiang Feng

Connexin 43 (Cx43) has been reported to be involved in neuropathic pain, but whether it contributes to morphine antinociceptive tolerance remains unknown. The present study investigated the role of spinal Cx43 in the development of morphine tolerance and its mechanisms in rats.

Collaboration


Dive into the Liqiu Mo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei-Xi Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Xinxue Liao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Fen Hu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiping Lan

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wenming Xu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge