Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liquan Gao is active.

Publication


Featured researches published by Liquan Gao.


Theranostics | 2015

Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer.

Xianlei Sun; Duo Gao; Liquan Gao; Chenran Zhang; Xinhe Yu; Bing Jia; Fan Wang; Zhaofei Liu

Significant evidence has indicated that tumor-associated macrophages (TAMs) play a critical role in the proliferation, invasion, angiogenesis, and metastasis of a variety of human carcinomas. In this study, we investigated whether near-infrared fluorescence (NIRF) imaging using a macrophage mannose receptor (MMR; CD206)-targeting agent could be used to noninvasively visualize and quantify changes in TAMs in vivo. The CD206-targeting NIRF agent, Dye-anti-CD206, was prepared and characterized in vitro and in vivo. By using NIRF imaging, we were able to noninvasively image tumor-infiltrating macrophages in the 4T1 mouse breast cancer model. Importantly, longitudinal NIRF imaging revealed the depletion of macrophages in response to zoledronic acid (ZA) treatment. However, ZA alone did not lead to the inhibition of 4T1 tumor growth. We therefore combined anti-macrophage ZA therapy and tumor cytotoxic docetaxel (DTX) therapy in the mouse model. The results demonstrated that this combination strategy could significantly inhibit tumor growth as well as tumor metastasis to the lungs. Based on these findings, we concluded that CD206-targeted molecular imaging can sensitively detect the dynamic changes in tumor-infiltrating macrophages, and that the combination of macrophage depletion and cytotoxic therapy is a promising strategy for the effective treatment of solid tumors.


Theranostics | 2016

Enhanced Anti-Tumor Efficacy through a Combination of Integrin αvβ6-Targeted Photodynamic Therapy and Immune Checkpoint Inhibition

Liquan Gao; Chenran Zhang; Duo Gao; Hao Liu; Xinhe Yu; Jianhao Lai; Fan Wang; Jian Lin; Zhaofei Liu

“Training” the host immune system to recognize and systemically eliminate residual tumor lesions and micrometastases is a promising strategy for cancer therapy. In this study, we investigated whether integrin αvβ6-targeted photodynamic therapy (PDT) of tumors using a phthalocyanine dye-labeled probe (termed DSAB-HK) could trigger the host immune response, and whether PDT in combination with anti-PD-1 immune checkpoint inhibition could be used for the effective therapy of primary tumors and metastases. By near-infrared fluorescence imaging, DSAB-HK was demonstrated to specifically target either subcutaneous tumors in a 4T1 mouse breast cancer model or firefly luciferase stably transfected 4T1 (4T1-fLuc) lung metastatic tumors. Upon light irradiation, PDT by DSAB-HK significantly inhibited the growth of subcutaneous 4T1 tumors, and in addition promoted the maturation of dendritic cells and their production of cytokines, which subsequently stimulated the tumor recruitment of CD8+ cytotoxic T lymphocytes. Furthermore, DSAB-HK PDT of the first tumor followed by PD-1 blockade markedly suppressed the growth of a second subcutaneous tumor, and also slowed the growth of 4T1-fLuc lung metastasis as demonstrated by serial bioluminescence imaging. Together, our results demonstrated the synergistic effect of tumor-targeted PDT and immune checkpoint inhibition for improving anti-tumor immunity and suppressing tumor growth/metastasis.


Molecular Pharmaceutics | 2015

Serial in vivo imaging using a fluorescence probe allows identification of tumor early response to cetuximab immunotherapy.

Teng Ma; Hao Liu; Xianlei Sun; Liquan Gao; Jiyun Shi; Huiyun Zhao; Bing Jia; Fan Wang; Zhaofei Liu

Cetuximab is an antiepidermal growth factor receptor (EGFR) monoclonal antibody that has received the approval of the Food and Drug Administration (FDA) for cancer treatment. However, most clinical studies indicate that cetuximab can only elicit positive effects on a subset of cancer patients. In this study, we investigated whether near-infrared fluorescence (NIRF) imaging of tumor vascular endothelial growth factor (VEGF) expression could be a biomarker for tumor early response to cetuximab therapy in preclinical wild-type and mutant tumor models of the KRAS gene. The treatment efficacy of cetuximab was determined in both HT-29 (wild-type KRAS) and HTC-116 (mutant KRAS) human colon cancer models. A VEGF-specific optical imaging probe (Dye755-Ran) was synthesized by conjugating ranibizumab (an anti-VEGF antibody Fab fragment) with a NIRF dye. Serial optical scans with Dye755-Ran were performed in HT-29 and HTC-116 xenograft models. By using longitudinal NIRF imaging, we were able to detect early tumor response on day 3 and day 5 after initiation of cetuximab treatment in the cetuximab-responsive HT-29 tumor model. Enzyme-linked immunosorbent assay (ELISA) confirmed that cetuximab treatment inhibited human VEGF expression in the KRAS wild-type HT-29 tumor but not in the KRAS mutant HCT-116 tumor. We have demonstrated that the antitumor effect of cetuximab can be noninvasively monitored by serial fluorescence imaging using Dye755-Ran. VEGF expression detected by optical imaging could serve as a sensitive biomarker for tumor early response to drugs that directly or indirectly act on VEGF.


The Journal of Nuclear Medicine | 2014

Molecular Imaging Reveals Trastuzumab-Induced Epidermal Growth Factor Receptor Downregulation In Vivo

Teng Ma; Xianlei Sun; Liyang Cui; Liquan Gao; Yue Wu; Hao Liu; Zhaohui Zhu; Fan Wang; Zhaofei Liu

Previous in vitro studies demonstrated that treating tumors expressing both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 with trastuzumab resulted in increased EGFR homodimerization and subsequent rapid downregulation of EGFR. We investigated whether molecular imaging using near-infrared fluorescence (NIRF) imaging and PET probes could sensitively detect trastuzumab-induced EGFR downregulation in vivo. Methods: The F(ab′)2 antibody fragment PaniF(ab′)2 was generated by digesting the anti-EGFR monoclonal antibody panitumumab. PaniF(ab′)2 was labeled with either a NIRF dye or 68Ga, and optical imaging and small-animal PET imaging of Dye-PaniF(ab′)2 and 68Ga-PaniF(ab′)2, respectively, were performed in HT-29 tumor–bearing nude mice treated with trastuzumab or untreated control. Results: Longitudinal NIRF imaging studies revealed significantly reduced tumor uptake of Dye-PaniF(ab′)2 on days 5 and 7 in trastuzumab-treated HT-29 tumors, compared with control. Western blotting confirmed the downregulation of EGFR after treatment with trastuzumab. Small-animal PET on day 5 after trastuzumab treatment also demonstrated decreased 68Ga-PaniF(ab′)2 uptake in trastuzumab-treated HT-29 tumors. The tumor uptake value of 68Ga-PaniF(ab′)2 obtained from PET imaging had an excellent linear correlation with the uptake value measured using biodistribution. Conclusion: The downregulation of EGFR induced by trastuzumab treatment could be detected noninvasively using optical and PET imaging. This molecular imaging strategy could provide a dynamic readout of changes in the tumor signaling and may facilitate the noninvasive monitoring of the early tumor response to drug treatment.


ACS Nano | 2017

Inhibiting Metastasis and Preventing Tumor Relapse by Triggering Host Immunity with Tumor-Targeted Photodynamic Therapy Using Photosensitizer-Loaded Functional Nanographenes

Xinhe Yu; Duo Gao; Liquan Gao; Jianhao Lai; Chenran Zhang; Yang Zhao; Lijun Zhong; Bing Jia; Fan Wang; Xiaoyuan Chen; Zhaofei Liu

Effective cancer therapy depends not only on destroying the primary tumor but also on conditioning the host immune system to recognize and eliminate residual tumor cells and prevent metastasis. In this study, a tumor integrin αvβ6-targeting peptide (the HK peptide)-functionalized graphene oxide (GO) was coated with a photosensitizer (HPPH). The resulting GO conjugate, GO(HPPH)-PEG-HK, was investigated whether it could destroy primary tumors and boost host antitumor immunity. We found that GO(HPPH)-PEG-HK exhibited significantly higher tumor uptake than GO(HPPH)-PEG and HPPH. Photodynamic therapy (PDT) using GO(HPPH)-PEG suppressed tumor growth in both subcutaneous and lung metastatic mouse models. Necrotic tumor cells caused by GO(HPPH)-PEG-HK PDT activated dendritic cells and significantly prevented tumor growth and lung metastasis by increasing the infiltration of cytotoxic CD8+ T lymphocytes within tumors as evidenced by in vivo optical and single-photon emission computed tomography (SPECT)/CT imaging. These results demonstrate that tumor-targeted PDT using GO(HPPH)-PEG-HK could effectively ablate primary tumors and destroy residual tumor cells, thereby preventing distant metastasis by activating host antitumor immunity and suppressing tumor relapse by stimulation of immunological memory.


The Journal of Nuclear Medicine | 2016

Molecular Imaging of Post-Src Inhibition Tumor Signatures for Guiding Dasatinib Combination Therapy

Liquan Gao; Hao Liu; Xianlei Sun; Duo Gao; Chenran Zhang; Bing Jia; Zhaohui Zhu; Fan Wang; Zhaofei Liu

Noninvasive, real-time, quantitative measurement of key biomarkers associated with cancer therapeutic interventions could provide a better understanding of cancer biology. We investigated in this study whether incorporating multiple molecular imaging approaches could be used to guide dasatinib anti-Src therapy and aid in the rational design of a combination therapy regimen. Methods: Bioluminescence imaging, 18F-FDG PET, integrin αvβ3–targeted SPECT/CT, and vascular endothelial growth factor–targeted near-infrared fluorescence imaging were performed before and after dasatinib treatment in a tumor mouse model. Results: There was no significant difference in the bioluminescence imaging signal or 18F-FDG tumor uptake in dasatinib-treated tumors compared with the control tumors. However, the uptake of 99mT-3PRGD2 (integrin αvβ3–specific) and DyLight755-ranibizumab (vascular endothelial growth factor–specific) in the dasatinib-treated tumors was significantly lower than that in the control tumors. In vitro studies confirmed the antiangiogenic effects of dasatinib but indicated a lack of cytotoxicity. Dasatinib plus cytotoxic docetaxel elicited marked synergistic tumor growth inhibition in vivo. Conclusion: Visualization of post-Src inhibition tumor signatures through multiple imaging approaches facilitates sensitive and quantitative measurement of cancer biomarkers in vivo, thus aiding in the rational design of dasatinib combination therapy.


Radiology | 2016

Small-Animal SPECT/CT of the Progression and Recovery of Rat Liver Fibrosis by Using an Integrin αvβ3-targeting Radiotracer.

Xinhe Yu; Yue Wu; Hao Liu; Liquan Gao; Xianlei Sun; Chenran Zhang; Jiyun Shi; Huiyun Zhao; Bing Jia; Zhaofei Liu; Fan Wang

PURPOSE To assess the potential utility of an integrin αvβ3-targeting radiotracer, technetium 99m-PEG4-E[PEG4-cyclo(arginine-glycine-aspartic acid-D-phenylalanine-lysine)]2 ((99m)Tc-3PRGD2), for single photon emission computed tomography (SPECT)/computed tomography (CT) for monitoring of the progression and prognosis of liver fibrosis in a rat model. MATERIALS AND METHODS All animal experiments were performed by following the protocol approved by the institutional animal care and use committee. (99m)Tc-3PRGD2 was prepared and longitudinal SPECT/CT was performed to monitor the progression (n = 8) and recovery (n = 5) of liver fibrosis induced in a rat model by means of thioacetamide (TAA) administration. The mean liver-to-background radioactivity per unit volume ratio was analyzed for comparisons between the TAA and control (saline) groups at different stages of liver fibrosis. Data were compared by using Student t and Mann-Whitney tests. Results:of SPECT/CT were compared with those of ex vivo biodistribution analysis (n = 5). RESULTS Accumulation of (99m)Tc-3PRGD2 in the liver increased in proportion to the progression of fibrosis and TAA exposure time; accumulation levels were significantly different between the TAA and control groups as early as week 4 of TAA administration (liver-to-background ratio: 32.30 ± 3.39 vs 19.01 ± 3.31; P = .0002). Results of ex vivo immunofluorescence staining demonstrated the positive expression of integrin αvβ3 on the activated hepatic stellate cells, and the integrin αvβ3 levels in the liver corresponded to the results of SPECT/CT (R(2) = 0.75, P < .0001). (99m)Tc-3PRGD2 uptake in the fibrotic liver decreased after antifibrotic therapy with interferon α2b compared with that in the control group (relative liver-to-background ratio: 0.45 ± 0.05 vs 1.01 ± 0.05; P < .0001) or spontaneous recovery (relative liver-to-background ratio: 0.56 ± 0.06 vs 1.01 ± 0.05; P < .0001). CONCLUSION (99m)Tc-3PRGD2 SPECT/CT was successfully used to monitor the progression and recovery of liver fibrosis and shows potential applications for noninvasive diagnosis of early stage liver fibrosis.


Cancer Research | 2017

Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy

Yang Zhao; Chenran Zhang; Liquan Gao; Xinhe Yu; Jianhao Lai; Dehua Lu; Rui Bao; Yanpu Wang; Bing Jia; Fan Wang; Zhaofei Liu

Increased recruitment of tumor-associated macrophages (TAM) to tumors following chemotherapy promotes tumor resistance and recurrence and correlates with poor prognosis. TAM depletion suppresses tumor growth, but is not highly effective due to the effects of tumorigenic mediators from other stromal sources. Here, we report that adoptive macrophage transfer led to a dramatically enhanced photodynamic therapy (PDT) effect of 2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-alpha (HPPH)-coated polyethylene glycosylated nanographene oxide [GO(HPPH)-PEG] by increasing its tumor accumulation. Moreover, tumor treatment with commonly used chemotherapeutic drugs induced an increase in macrophage infiltration into tumors, which also enhanced tumor uptake and the PDT effects of GO(HPPH)-PEG, resulting in tumor eradication. Macrophage recruitment to tumors after chemotherapy was visualized noninvasively by near-infrared fluorescence and single-photon emission CT imaging using F4/80-specific imaging probes. Our results demonstrate that chemotherapy combined with GO(HPPH)-PEG PDT is a promising strategy for the treatment of tumors, especially those resistant to chemotherapy. Furthermore, TAM-targeted molecular imaging could potentially be used to predict the efficacy of combination therapy and select patients who would most benefit from this treatment approach. Cancer Res; 77(21); 6021-32. ©2017 AACR.


Theranostics | 2017

Noninvasive Imaging of CD206-Positive M2 Macrophages as an Early Biomarker for Post-Chemotherapy Tumor Relapse and Lymph Node Metastasis

Chenran Zhang; Xinhe Yu; Liquan Gao; Yang Zhao; Jianhao Lai; Dehua Lu; Rui Bao; Bing Jia; Lijun Zhong; Fan Wang; Zhaofei Liu

Tumor relapse after initial regression post-chemotherapy is a major challenge in cancer treatment, as it usually leads to local-regional recurrence or inoperable distant metastasis. M2 macrophages diminish the tumor-inhibitory effect of chemotherapy and correlate with distant metastasis and poor prognosis. In this study, we investigated whether molecular imaging of M2 macrophages could serve as an early biomarker for tumor relapse after chemotherapy and tumor lymph node metastasis in preclinical mouse models. Methods: We developed M2 macrophage-targeted probes for near-infrared fluorescence (NIRF) imaging and single-photon emission computed tomography (SPECT) using an anti-CD206 monoclonal antibody. The specific targeting capacity and potential applications of the NIRF and SPECT probes were investigated in subcutaneous tumor and lymph node metastasis models of 4T1 murine breast cancer. Results: M2 macrophage infiltration was significantly increased in the 4T1 tumors that later underwent relapse but not in non-relapsing 4T1 tumors after cyclophosphamide treatment. Through NIRF imaging and SPECT using our synthesized probes, the infiltration of M2 macrophages in relapsing tumors and tumor lymph node metastasis could be sensitively detected. Importantly, early prediction of tumor relapse by molecular imaging of M2 macrophages resulted in an effective eradication of tumors upon combination with additional radiotherapy. Conclusion: Our findings demonstrate that M2 macrophage-targeted imaging allows for noninvasively predicting post-chemotherapy tumor relapse and sensitively detecting the metastatic lymph nodes in vivo. This imaging strategy could provide a better understanding of cancer progression, enable early prediction of tumor resistance, and have implications on the rational design of cancer therapeutics.


Biomaterials | 2015

A near-infrared phthalocyanine dye-labeled agent for integrin αvβ6-targeted theranostics of pancreatic cancer

Duo Gao; Liquan Gao; Chenran Zhang; Hao Liu; Bing Jia; Zhaohui Zhu; Fan Wang; Zhaofei Liu

Collaboration


Dive into the Liquan Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge