Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liqun Chen is active.

Publication


Featured researches published by Liqun Chen.


Oncogene | 2011

Insulin-like growth factor binding protein 5 suppresses tumor growth and metastasis of human osteosarcoma

Yuxi Su; Eric R. Wagner; Qing Luo; Jiayi Huang; Liqun Chen; Bai-Cheng He; Guo-Wei Zuo; Qiong Shi; Zhang Bq; Gao-Hui Zhu; Yang Bi; Jinyong Luo; Xiaoji Luo; Stephanie H. Kim; Jikun Shen; Farbod Rastegar; Elbert S. Huang; Yanhong Gao; Jian-Li Gao; Ke Yang; Christian Wietholt; Melissa Li; Jiaqiang Qin; Rex C. Haydon; Tong-Chuan He; Hue H. Luu

Osteosarcoma (OS) is the most common primary malignancy of bone. There is a critical need to identify the events that lead to the poorly understood mechanism of OS development and metastasis. The goal of this investigation is to identify and characterize a novel marker of OS progression. We have established and characterized a highly metastatic OS subline that is derived from the less metastatic human MG63 line through serial passages in nude mice via intratibial injections. Microarray analysis of the parental MG63, the highly metastatic MG63.2 subline, as well as the corresponding primary tumors and pulmonary metastases revealed insulin-like growth factor binding protein 5 (IGFBP5) to be one of the significantly downregulated genes in the metastatic subline. Confirmatory quantitative RT–PCR on 20 genes of interest demonstrated IGFBP5 to be the most differentially expressed and was therefore chosen to be one of the genes for further investigation. Adenoviral mediated overexpression and knockdown of IGFBP5 in the MG63 and MG63.2 cell lines, as well as other OS lines (143B and MNNG/HOS) that are independent of our MG63 lines, were employed to examine the role of IGFBP5. We found that overexpression of IGFBP5 inhibited in vitro cell proliferation, migration and invasion of OS cells. Additionally, IGFBP5 overexpression promoted apoptosis and cell cycle arrest in the G1 phase. In an orthotopic xenograft animal model, overexpression of IGFBP5 inhibited OS tumor growth and pulmonary metastases. Conversely, siRNA-mediated knockdown of IGFBP5 promoted OS tumor growth and pulmonary metastases in vivo. Immunohistochemical staining of patient-matched primary and metastatic OS samples demonstrated decreased IGFBP5 expression in the metastases. These results suggest 1) a role for IGFBP5 as a novel marker that has an important role in the pathogenesis of OS, and 2) that the loss of IGFBP5 function may contribute to more metastatic phenotypes in OS.


Ppar Research | 2010

Therapeutic Implications of PPARgamma in Human Osteosarcoma.

Eric R. Wagner; Bai-Cheng He; Liqun Chen; Guo-Wei Zuo; Wenwen Zhang; Qiong Shi; Qing Luo; Xiaoji Luo; Bo Liu; Jinyong Luo; Farbod Rastegar; Connie J. He; Yawen Hu; Barrett Boody; Hue H. Luu; Tong-Chuan He; Zhong Liang Deng; Rex C. Haydon

Osteosarcoma (OS) is the most common nonhematologic malignancy of bone in children and adults. Although dysregulation of tumor suppressor genes and oncogenes, such as Rb, p53, and the genes critical to cell cycle control, genetic stability, and apoptosis have been identified in OS, consensus genetic changes that lead to OS development are poorly understood. Disruption of the osteogenic differentiation pathway may be at least in part responsible for OS tumorigenesis. Current OS management involves chemotherapy and surgery. Peroxisome proliferator-activated receptor (PPAR) agonists and/or retinoids can inhibit OS proliferation and induce apoptosis and may inhibit OS growth by promoting osteoblastic terminal differentiation. Thus, safe and effective PPAR agonists and/or retinoid derivatives can be then used as adjuvant therapeutic drugs for OS therapy. Furthermore, these agents have the potential to be used as chemopreventive agents for the OS patients who undergo the resection of the primary bone tumors in order to prevent local recurrence and/or distal pulmonary metastasis.


Cellular Physiology and Biochemistry | 2017

Notch Signaling Augments BMP9-Induced Bone Formation by Promoting the Osteogenesis-Angiogenesis Coupling Process in Mesenchymal Stem Cells (MSCs)

Junyi Liao; Qiang Wei; Yulong Zou; Jiaming Fan; Dongzhe Song; Jing Cui; Wenwen Zhang; Yunxiao Zhu; Chao Ma; Xue Hu; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Claire Wang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Hue H. Luu; Michael J. Lee; Russell R. Reid; Guillermo A. Ameer; Jennifer Moriatis Wolf; Tong-Chuan He

Background/Aims: Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into several lineages including bone. Successful bone formation requires osteogenesis and angiogenesis coupling of MSCs. Here, we investigate if simultaneous activation of BMP9 and Notch signaling yields effective osteogenesis-angiogenesis coupling in MSCs. Methods: Recently-characterized immortalized mouse adipose-derived progenitors (iMADs) were used as MSC source. Transgenes BMP9, NICD and dnNotch1 were expressed by adenoviral vectors. Gene expression was determined by qPCR and immunohistochem¡stry. Osteogenic activity was assessed by in vitro assays and in vivo ectopic bone formation model. Results: BMP9 upregulated expression of Notch receptors and ligands in iMADs. Constitutively-active form of Notch1 NICD1 enhanced BMP9-induced osteogenic differentiation both in vitro and in vivo, which was effectively inhibited by dominant-negative form of Notch1 dnNotch1. BMP9- and NICD1-transduced MSCs implanted with a biocompatible scaffold yielded highly mature bone with extensive vascularization. NICD1 enhanced BMP9-induced expression of key angiogenic regulators in iMADs and Vegfa in ectopic bone, which was blunted by dnNotch1. Conclusion: Notch signaling may play an important role in BMP9-induced osteogenesis and angiogenesis. It’s conceivable that simultaneous activation of the BMP9 and Notch pathways should efficiently couple osteogenesis and angiogenesis of MSCs for successful bone tissue engineering.


Cellular Physiology and Biochemistry | 2016

A Blockade of IGF Signaling Sensitizes Human Ovarian Cancer Cells to the Anthelmintic Niclosamide-Induced Anti- Proliferative and Anticancer Activities

Youlin Deng; Zhongliang Wang; Fugui Zhang; Min Qiao; Zhengjian Yan; Qiang Wei; Jing Wang; Hao Liu; Jiaming Fan; Yulong Zou; Junyi Liao; Xue Hu; Liqun Chen; Xinyi Yu; Rex C. Haydon; Hue H. Luu; Hongbo Qi; Tong-Chuan He; Junhui Zhang

Background/Aims: Ovarian cancer is the most lethal gynecologic malignancy, and there is an unmet clinical need to develop new therapies. Although showing promising anticancer activity, Niclosamide may not be used as a monotherapy. We seek to investigate whether inhibiting IGF signaling potentiates Niclosamides anticancer efficacy in human ovarian cancer cells. Methods: Cell proliferation and migration are assessed. Cell cycle progression and apoptosis are analyzed by flow cytometry. Inhibition of IGF signaling is accomplished by adenovirus-mediated expression of siRNAs targeting IGF-1R. Cancer-associated pathways are assessed using pathway-specific reporters. Subcutaneous xenograft model is used to determine anticancer activity. Results: We find that Niclosamide is highly effective on inhibiting cell proliferation, cell migration, and cell cycle progression, and inducing apoptosis in human ovarian cancer cells, possibly by targeting multiple signaling pathways involved in ELK1/SRF, AP-1, MYC/MAX and NFkB. Silencing IGF-1R exert a similar but weaker effect than that of Niclosamides. However, silencing IGF-1R significantly sensitizes ovarian cancer cells to Niclosamide-induced anti-proliferative and anticancer activities both in vitro and in vivo. Conclusion: Niclosamide as a repurposed anticancer agent may be more efficacious when combined with agents that target other signaling pathways such as IGF signaling in the treatment of human cancers including ovarian cancer.


Oncotarget | 2017

Noncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors

Jiaming Fan; Qiang Wei; Junyi Liao; Yulong Zou; Dongzhe Song; Dongmei Xiong; Chao Ma; Xue Hu; Xiangyang Qu; Liqun Chen; Li Li; Yichun Yu; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Wenwen Zhang; Rex C. Haydon; Hue H. Luu; Ailong Huang; Tong-Chuan He; Hua Tang

The liver provides vital metabolic, exocrine and endocrine functions in the body as such pathological conditions of the liver lead to high morbidity and mortality. The liver is highly regenerative and contains facultative stem cells that become activated during injury to replicate to fully recover mass and function. Canonical Wnt/β-catenin signaling plays an important role in regulating the proliferation and differentiation of liver progenitor cells during liver regeneration. However, possible roles of noncanonical Wnts in liver development and regeneration remain undefined. We previously established a reversibly-immortalized hepatic progenitor cell line (iHPx), which retains hepatic differentiation potential. Here, we analyze the expression pattern of the essential components of both canonical and noncanonical Wnt signaling pathways at different postnatal stages of mouse liver tissues and iHPx cells. We find that noncanonical Wnt4, Wnt5a, Wnt9b, Wnt10a and Wnt10b, are highly expressed concordantly with the high levels of canonical Wnts in late stages of liver tissues. Wnt5a, Wnt9b, Wnt10a and Wnt10b are able to antagonize Wnt3a-induced β-catenin/TCF activity, reduce the stemness of iHPx cells, and promote hepatic differentiation of liver progenitors. Stem cell implantation assay demonstrates that Wnt5a, Wnt9b, Wnt10a and Wnt10b can inhibit cell proliferation and promote hepatic differentiation of the iHPx progenitor cells. Our results strongly suggest that noncanonical Wnts may play an important role in fine-tuning Wnt/β-catenin functions during liver development and liver regeneration. Thus, understanding regulatory mechanisms governing proliferation and differentiation of liver progenitor cells may hold great promise to facilitate liver regeneration and/or progenitor cell-based therapies for liver diseases.


Cellular Physiology and Biochemistry | 2017

NEL-Like Molecule-1 (Nell1) Is Regulated by Bone Morphogenetic Protein 9 (BMP9) and Potentiates BMP9-Induced Osteogenic Differentiation at the Expense of Adipogenesis in Mesenchymal Stem Cells

Jing Wang; Junyi Liao; Fugui Zhang; Dongzhe Song; Minpeng Lu; Jianxiang Liu; Qiang Wei; Shengli Tang; Hao Liu; Jiaming Fan; Yulong Zou; Dan Guo; Jiayi Huang; Feng Liu; Chao Ma; Xue Hu; Li Li; Xiangyang Qu; Liqun Chen; Yaguang Weng; Michael J. Lee; Tong-Chuan He; Russell R. Reid; Jiye Zhang

Background: BMP9 induces both osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs). Nell1 is a secretory glycoprotein with osteoinductive and anti-adipogenic activities. We investigated the role of Nell1 in BMP9-induced osteogenesis and adipogenesis in MSCs. Methods: Previously characterized MSCs iMEFs were used. Overexpression of BMP9 and NELL1 or silencing of mouse Nell1 was mediated by adenoviral vectors. Early and late osteogenic and adipogenic markers were assessed by staining techniques and qPCR analysis. In vivo activity was assessed in an ectopic bone formation model of athymic mice. Results: We demonstrate that Nell1 expression was up-regulated by BMP9. Exogenous Nell1 potentiated BMP9-induced late stage osteogenic differentiation while inhibiting the early osteogenic marker. Forced Nell1 expression enhanced BMP9-induced osteogenic regulators/markers and inhibited BMP9-upregulated expression of adipogenic regulators/markers in MSCs. In vivo ectopic bone formation assay showed that exogenous Nell1 expression enhanced mineralization and maturity of BMP9-induced bone formation, while inhibiting BMP9-induced adipogenesis. Conversely, silencing Nell1 expression in BMP9-stimulated MSCs led to forming immature chondroid-like matrix. Conclusion: Our findings indicate that Nell1 can be up-regulated by BMP9, which in turn accelerates and augments BMP9-induced osteogenesis. Exogenous Nell1 may be exploited to enhance BMP9-induced bone formation while overcoming BMP9-induced adipogenesis in regenerative medicine.


Cellular Physiology and Biochemistry | 2017

Engineering the Rapid Adenovirus Production and Amplification (RAPA) Cell Line to Expedite the Generation of Recombinant Adenoviruses

Qiang Wei; Jiaming Fan; Junyi Liao; Yulong Zou; Dongzhe Song; Jianxiang Liu; Jing Cui; Feng Liu; Chao Ma; Xue Hu; Li Li; Yichun Yu; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Xingye Wu; Yi Shu; Russell R. Reid; Michael J. Lee; Jennifer Moritis Wolf; Tong-Chuan He

Background/Aims: While recombinant adenoviruses are among the most widely-used gene delivery vectors and usually propagated in HEK-293 cells, generating recombinant adenoviruses remains time-consuming and labor-intense. We sought to develop a rapid adenovirus production and amplification (RAPA) line by assessing human Ad5 genes (E1A, E1B19K/55K, pTP, DBP, and DNA Pol) and OCT1 for their contributions to adenovirus production. Methods: Stable transgene expression in 293T cells was accomplished by using piggyBac system. Transgene expression was determined by qPCR. Adenoviral production was assessed with titering, fluorescent markers and/or luciferase activity. Osteogenic activity was assessed by measuring alkaline phosphatase activity. Results: Overexpression of both E1A and pTP led to a significant increase in adenovirus amplification, whereas other transgene combinations did not significantly affect adenovirus amplification. When E1A and pTP were stably expressed in 293T cells, the resultant RAPA line showed high efficiency in adenovirus amplification and production. The produced AdBMP9 infected mesenchymal stem cells with highest efficiency and induced most effective osteogenic differentiation. Furthermore, adenovirus production efficiency in RAPA cells was dependent on the amount of transfected DNA. Under optimal transfection conditions high-titer adenoviruses were obtained within 5 days of transfection. Conclusion: The RAPA cells are highly efficient for adenovirus production and amplification.


Oncotarget | 2017

Anthelmintic mebendazole enhances cisplatin’s effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC)

Fugui Zhang; Yong Li; Hongmei Zhang; Enyi Huang; Lina Gao; Wenping Luo; Qiang Wei; Jiaming Fan; Dongzhe Song; Junyi Liao; Yulong Zou; Feng Liu; Jianxiang Liu; Jiayi Huang; Dan Guo; Chao Ma; Xue Hu; Li Li; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Tingting Wu; Hue H. Luu; Rex C. Haydon; Jinlin Song; Tong-Chuan He; Ping Ji

Head and neck squamous cell carcinoma (HNSCC) is one of the most common and aggressive types of human cancers worldwide. Nearly a half of HNSCC patients experience recurrence within five years of treatment and develop resistance to chemotherapy. Thus, there is an urgent clinical need to develop safe and novel anticancer therapies for HNSCC. Here, we investigate the possibility of repurposing the anthelmintic drug mebendazole (MBZ) as an anti-HNSCC agent. Using the two commonly-used human HNSCC lines CAL27 and SCC15, we demonstrate MBZ exerts more potent anti-proliferation activity than cisplatin in human HNSCC cells. MBZ effectively inhibits cell proliferation, cell cycle progression and cell migration, and induces apoptosis of HNSCC cells. Mechanistically, MBZ can modulate the cancer-associated pathways including ELK1/SRF, AP1, STAT1/2, MYC/MAX, although the regulatory outcomes are context-dependent. MBZ also synergizes with cisplatin in suppressing cell proliferation and inducing apoptosis of human HNSCC cells. Furthermore, MBZ is shown to promote the terminal differentiation of CAL27 cells and keratinization of CAL27-derived xenograft tumors. Our results are the first to demonstrate that MBZ may exert its anticancer activity by inhibiting proliferation while promoting differentiation of certain HNSCC cancer cells. Its conceivable the anthelmintic drug MBZ can be repurposed as a safe and effective agent used in combination with other frontline chemotherapy drugs such as cisplatin in HNSCC treatment.


Gene Therapy | 2017

Characterization of retroviral infectivity and superinfection resistance during retrovirus-mediated transduction of mammalian cells

Junyi Liao; Qiang Wei; Jiaming Fan; Yulong Zou; Dongzhe Song; J Liu; F Liu; Chao Ma; Xue Hu; Li Li; Yichun Yu; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Wenwen Zhang; Jia Wang; Russell R. Reid; Michael J. Lee; Wei Huang; Jennifer Moriatis Wolf

Retroviral vectors including lentiviral vectors are commonly used tools to stably express transgenes or RNA molecules in mammalian cells. Their utilities are roughly divided into two categories, stable overexpression of transgenes and RNA molecules, which requires maximal transduction efficiency, or functional selection with retrovirus (RV)-based libraries, which takes advantage of retroviral superinfection resistance. However, the dynamic features of RV-mediated transduction are not well characterized. Here, we engineered two murine stem cell virus-based retroviral vectors expressing dual fluorescence proteins and antibiotic markers, and analyzed virion production efficiency and virion stability, dynamic infectivity and superinfection resistance in different cell types, and strategies to improve transduction efficiency. We found that the highest virion production occurred between 60 and 72 h after transfection. The stability of the collected virion supernatant decreased by >60% after 3 days in storage. We found that RV infectivity varied drastically in the tested human cancer lines, while low transduction efficiency was partially overcome with increased virus titer, prolonged infection duration and/or repeated infections. Furthermore, we demonstrated that RV receptors PIT1 and PIT2 were lowly expressed in the analyzed cells, and that PIT1 and/or PIT2 overexpression significantly improved transduction efficiency in certain cell lines. Thus, our findings provide resourceful information for the optimal conditions of retroviral-mediated gene delivery.


Journal of Cellular and Molecular Medicine | 2017

BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients

Dongzhe Song; Fugui Zhang; Russell R. Reid; Jixing Ye; Qiang Wei; Junyi Liao; Yulong Zou; Jiaming Fan; Chao Ma; Xue Hu; Xiangyang Qu; Liqun Chen; Li Li; Yichun Yu; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Wenwen Zhang; Jia Wang; Michael J. Lee; Jennifer Moriatis Wolf; Dingming Huang

The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long‐term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long‐term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering.

Collaboration


Dive into the Liqun Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinyi Yu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Wei

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Zhao

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Xue Hu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge