Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liqun Huang is active.

Publication


Featured researches published by Liqun Huang.


Cancer Research | 2010

Annexin 1 Induced by Anti-Inflammatory Drugs Binds to NF-κB and Inhibits Its Activation: Anticancer Effects In vitro and In vivo

Zhiquan Zhang; Liqun Huang; Wenping Zhao; Basil Rigas

Annexin A1 (ANXA1), a mediator of the anti-inflammatory action of glucocorticoids, is important in cancer development and progression, whereas NF-kappaB regulates multiple cellular phenomena, some of them associated with inflammation and cancer. We showed that glucocorticoids and chemopreventive modified nonsteroidal anti-inflammatory drugs, such as nitric oxide-donating aspirin (NO-ASA) and phospho-aspirin, induced ANXA1 in cultured human colon and pancreatic cancer cells. ANXA1 associated with NF-kappaB and suppressed its transcriptional activity by preventing NF-kappaB binding to DNA. The induction of ANXA1 by glucocorticoids was proportional to their anti-inflammatory potency, as was the suppression of NF-kappaB activity, which was accompanied by enhanced apoptosis and inhibition of cell growth mediated by changes in NF-kappaB-dependent cell signaling. The proposed novel mechanism was operational in the intestinal mucosa of mice treated with dexamethasone or NO-ASA. ANXA1-based oligopeptides displayed the same effects as ANXA1 on NF-kappaB. One such tripeptide (Gln-Ala-Trp) administered to nude mice inhibited the growth of SW480 human colon cancer xenografts by 58% compared with control (P < 0.01). Our findings reveal that ANXA1 is an inducible endogenous inhibitor of NF-kappaB in human cancer cells and mice, provide a novel molecular mechanism for the action of anti-inflammatory agents, and suggest the possibility of mechanism-driven drug development.


Gastroenterology | 2010

Phospho-Sulindac (OXT-328), a Novel Sulindac Derivative, Is Safe and Effective in Colon Cancer Prevention in Mice

Gerardo G. Mackenzie; Yu Sun; Liqun Huang; Gang Xie; Nengtai Ouyang; Ramesh C. Gupta; Francis Johnson; Despina Komninou; Levy Kopelovich; Basil Rigas

BACKGROUND & AIMS Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective cancer chemopreventive agents. However, chronic administration of NSAIDs is associated with significant side effects, mainly of the gastrointestinal tract. Given these limitations, we synthesized phospho-sulindac (P-S; OXT-328), a novel sulindac derivative. METHODS Here, we evaluated the safety and efficacy of P-S in preclinical models, including its mechanism of action with human colon cancer cell (HCCC) lines and animal tumor models. RESULTS (1) Compared with sulindac, P-S is much more potent in inhibiting the growth of cultured HCCCs and more efficacious in preventing the growth of HT-29 xenografts in nude mice. P-S also prevents the growth of intestinal tumors in Apc/Min mice. (2) In combination with difluoromethylornithine (DFMO), P-S reduced tumor multiplicity in Apc/Min mice by 90%. (3) P-S is much safer than sulindac as evidenced by its in vitro toxicologic evaluation and animal toxicity studies. Mechanistically, P-S increases the intracellular levels of reactive oxygen and nitrogen species, which are key early mediators of its chemopreventive effect. Moreover, P-S induces spermidine/spermine N(1)-acetyltransferase enzymatic activity, and together with DFMO it reduces polyamine levels in vitro and in vivo. CONCLUSIONS P-S displays considerable safety and efficacy, two pharmacologic properties that are essential for a potential cancer chemopreventive agent, and thus merits further evaluation.


PLOS ONE | 2013

Targeting Mitochondrial STAT3 with the Novel Phospho-Valproic Acid (MDC-1112) Inhibits Pancreatic Cancer Growth in Mice

Gerardo G. Mackenzie; Liqun Huang; Ninche Alston; Nengtai Ouyang; Kvetoslava Vrankova; George Mattheolabakis; Panayiotis P. Constantinides; Basil Rigas

New agents are needed to treat pancreatic cancer, one of the most lethal human malignancies. We synthesized phospho-valproic acid, a novel valproic acid derivative, (P-V; MDC-1112) and evaluated its efficacy in the control of pancreatic cancer. P-V inhibited the growth of human pancreatic cancer xenografts in mice by 60%–97%, and 100% when combined with cimetidine. The dominant molecular target of P-V was STAT3. P-V inhibited the phosphorylation of JAK2 and Src, and the Hsp90-STAT3 association, suppressing the activating phosphorylation of STAT3, which in turn reduced the expression of STAT3-dependent proteins Bcl-xL, Mcl-1 and survivin. P-V also reduced STAT3 levels in the mitochondria by preventing its translocation from the cytosol, and enhanced the mitochondrial levels of reactive oxygen species, which triggered apoptosis. Inhibition of mitochondrial STAT3 by P-V was required for its anticancer effect; mitochondrial STAT3 overexpression rescued animals from the tumor growth inhibition by P-V. Our results indicate that P-V is a promising candidate drug against pancreatic cancer and establish mitochondrial STAT3 as its key molecular target.


Journal of Pharmacology and Experimental Therapeutics | 2011

Oxidative Stress Mediates through Apoptosis the Anticancer Effect of Phospho-Nonsteroidal Anti-Inflammatory Drugs: Implications for the Role of Oxidative Stress in the Action of Anticancer Agents

Yu Sun; Liqun Huang; Gerardo G. Mackenzie; Basil Rigas

We assessed the relationship between oxidative stress, cytokinetic parameters, and tumor growth in response to novel phospho-nonsteroidal anti-inflammatory drugs (NSAIDs), agents with significant anticancer effects in preclinical models. Compared with controls, in SW480 colon and MCF-7 breast cancer cells, phospho-sulindac, phospho-aspirin, phospho-flurbiprofen, and phospho-ibuprofen (P-I) increased the levels of reactive oxygen and nitrogen species (RONS) and decreased GSH levels and thioredoxin reductase activity, whereas the conventional chemotherapeutic drugs (CCDs), 5-fluorouracil (5-FU), irinotecan, oxaliplatin, chlorambucil, paclitaxel, and vincristine, did not. In both cell lines, phospho-NSAIDs induced apoptosis and inhibited cell proliferation much more potently than CCDs. We then treated nude mice bearing SW480 xenografts with P-I or 5-FU that had an opposite effect on RONS in vitro. Compared with controls, P-I markedly suppressed xenograft growth, induced apoptosis in the xenografts (8.9 ± 2.7 versus 19.5 ± 3.0), inhibited cell proliferation (52.6 ± 5.58 versus 25.8 ± 7.71), and increased urinary F2-isoprostane levels (10.7 ± 3.3 versus 17.9 ± 2.2 ng/mg creatinine, a marker of oxidative stress); all differences were statistically significant. 5-FUs effects on tumor growth, apoptosis, proliferation, and F2-isoprostane were not statistically significant. F2-isoprostane levels correlated with the induction of apoptosis and the inhibition of cell growth. P-I induced oxidative stress only in the tumors, and its apoptotic effect was restricted to xenografts. Our data show that phospho-NSAIDs act against cancer through a mechanism distinct from that of various CCDs, underscore the critical role of oxidative stress in their effect, and indicate that pathways leading to oxidative stress may be useful targets for anticancer strategies.


Cancer Prevention Research | 2011

Phospho-sulindac (OXT-328) combined with difluoromethylornithine prevents colon cancer in mice

Gerardo G. Mackenzie; Nengtai Ouyang; Gang Xie; Kvetoslava Vrankova; Liqun Huang; Yu Sun; Despina Komninou; Levy Kopelovich; Basil Rigas

The nonsteroidal anti-inflammatory drug (NSAID) sulindac and the ornithine decarboxylase (ODC) antagonist difluoromethylornithine (DFMO), individually and together, are effective inhibitors of colon carcinogenesis. However, chronic use of sulindac is associated with significant side effects. We evaluated the chemopreventive efficacy of phospho-sulindac (P-S, OXT-328), an apparently safe derivative of sulindac, together with DFMO, in HT-29 human colon cancer xenografts. Nude mice were divided into four groups as follows: group 1 received vehicle (corn oil); group 2 received P-S (100 mg/kg/d) by oral gavage; group 3 received DFMO (2% in drinking water); and group 4 received P-S (100 mg/kg/d) by gavage plus DFMO (2% in drinking water; P-S/DFMO). Eighteen days after implantation, compared with controls, tumor volume was inhibited 65.9% by P-S, 52.9% by DFMO, and 70.9% by P-S/DFMO (P < 0.01 for all). P-S/DFMO reduced cell proliferation 27.1% and increased apoptosis 38.9% compared with controls (P < 0.05 for both). Compared with controls, P-S reduced the levels of thioredoxin-1 (Trx-1) and thioredoxin reductase (TrxR), whereas DFMO reduced polyamine content (putrescine and spermidine) and TrxR levels. Importantly, P-S/DFMO decreased putrescine and spermidine levels and the expression of Trx-1, TrxR, and cyclooxygenase (COX) 2. Of these molecular targets, TrxR most consistently correlated with tumor growth. Study results show that P-S/DFMO is an efficacious drug combination for colon cancer prevention and also show the safety of P-S, which may overcome the limiting side effects of conventional sulindac. P-S/DFMO has an intricate mechanism of action extending beyond polyamines and including the thioredoxin system, an emerging regulator of chemoprevention. P-S/DFMO merits further evaluation. Cancer Prev Res; 4(7); 1052–60. ©2011 AACR.


Cancer Research | 2011

Chemotherapeutic Properties of Phospho-Nonsteroidal Anti-Inflammatory Drugs, a New Class of Anticancer Compounds

Liqun Huang; Gerardo G. Mackenzie; Yu Sun; Nengtai Ouyang; Gang Xie; Kvetoslava Vrankova; Despina Komninou; Basil Rigas

Nonsteroidal anti-inflammatory drugs (NSAID) exhibit antineoplastic properties, but conventional NSAIDs do not fully meet safety and efficacy criteria for use as anticancer agents. In this study, we evaluated the chemotherapeutic efficacy of 5 novel phospho-NSAIDs, each of which includes in addition to the NSAID moiety a diethylphosphate linked through a butane moiety. All 5 compounds inhibited the growth of human breast, colon, and pancreatic cancer cell lines with micromolar potency. In vivo investigations confirmed the antitumor activity of phospho-aspirin (PA) and phospho-sulindac (PS) in inhibiting tumor growth in established human xenograft models, in which cell proliferation was suppressed and apoptosis enhanced in the absence of detectable animal toxicity. Notably, all of the phospho-NSAIDs tested induced reactive oxygen and nitrogen species in cultured cells, with PA and PS inducing detectable levels of oxidative stress in vivo that were associated positively with apoptosis and negatively with proliferation. Potentially explaining these effects, all of the phospho-NSAIDs tested also inhibited the thioredoxin system and the redox sensitive transcription factor NF-κB. Taken together, our findings show the strong anticancer efficacy and promising safety of phospho-NSAIDs in preclinical models of breast, colon, and pancreatic cancer, suggesting further evaluation as anticancer agents.


Journal of Pharmacology and Experimental Therapeutics | 2011

Phospho-ibuprofen (MDC-917) is a novel agent against colon cancer: Efficacy, metabolism and pharmacokinetics in mouse models

Gang Xie; Yu Sun; Ting Nie; Gerardo G. Mackenzie; Liqun Huang; Levy Kopelovich; Despina Komninou; Basil Rigas

We have developed a novel chemical modification of conventional nonsteroidal anti-inflammatory drugs to reduce their toxicity and enhance their efficacy. Phospho-ibuprofen [(PI) 2-(4-isobutyl-phenyl)-propionic acid-4-(diethoxy-phosphoryloxy)-butyl ester (MDC-917)], a novel derivative of ibuprofen, strongly inhibited the growth of human colon cancer cells in vitro and SW480 human colon cancer xenografts in nude mice. PI was metabolized minimally by cultured cells, but extensively by liver microsomes and mice, undergoing regioselective oxidation to produce 1-OH-PI and carboxyl-PI, which can be hydrolyzed to 1-OH-ibuprofen and carboxyl-ibuprofen, respectively. PI also can be hydrolyzed to release ibuprofen, which can generate 2-OH-ibuprofen, carboxyl-ibuprofen, and ibuprofen glucuronide. After a single oral administration (400 mg/kg) of PI, ibuprofen and ibuprofen glucuronide are the main plasma metabolites of PI; they have, respectively, Cmax of 530 and 215 μM, Tmax of 1 and 2 h, elimination t1/2 of 7.7 and 5.3 h, and area under the concentration-time curve (0–24 h) of 1816 and 832 μM × h. Intact PI was detected in several tissues but not in plasma; at a higher PI dose (1200 mg/kg), PI plasma levels were 12.4 μM. PI generated the same metabolites in mouse plasma as conventional ibuprofen, but with much lower levels, perhaps accounting for the enhanced safety of PI. The antitumor effect of PI was significantly associated with plasma ibuprofen levels (p = 0.016) but not with xenograft ibuprofen levels (p = 0.08), suggesting a complex anticancer effect. These results provide a pharmacological basis to explain, at least in part, the anticancer efficacy and safety of this promising compound and indicate that PI merits further evaluation as an anticancer agent.


Cancer Letters | 2009

Nitric oxide-donating aspirin inhibits the growth of pancreatic cancer cells through redox-dependent signaling.

Hui Zhou; Liqun Huang; Yu Sun; Basil Rigas

The novel chemopreventive nitric oxide-donating aspirin (NO-ASA) prevents nearly 90% of ductal adenocarcinomas in a animal tumor model. To decipher the mechanism of this effect, we studied in BxPC-3 human pancreatic cancer cells the sequence of signaling events leading from NO-ASA treatment to cell growth inhibition. NO-ASA inhibited the growth of BxPC-3 cells (IC(50) =13 microM), by inhibiting proliferation modestly and inducing apoptosis, necrosis and G(1)/S cell cycle block. At 15 min of treatment with NO-ASA, the intracellular levels of reactive oxygen species (ROS) began increasing (peak at 8h, baseline levels by 24h). ROS activated almost immediately in a time- and concentration-dependent manner the MAPK pathways p38, ERK and JNK (their activation was abrogated by the antioxidant N-acetylcysteine). MAPK activation induced p21(cip-1), which suppressed the levels of cyclin D1 that controls the G(1)/S cell cycle transition. NO-ASA induced COX-2 expression starting 90 min after p21(cip-1) was induced. When COX-2 expression was knocked down using siRNA against cox-2, the expression of p21(cip-1) was induced by NO-ASA, regardless of the level of expression of COX-2, suggesting a marginal, if any, role for COX-2 in the growth inhibitory effect of NO-ASA. These findings along with the temporal sequence of individual changes indicate a signaling sequence that involves ROS-->MAPKs-->p21(cip-1)-->cyclin D1-->cell death. Our findings establish the critical role of ROS as proximal signaling molecules in the action of anticancer compounds and may be useful in designing mechanism-driven approaches to cancer control.


Carcinogenesis | 2010

Phospho-sulindac (OXT-922) inhibits the growth of human colon cancer cell lines: a redox/polyamine-dependent effect.

Liqun Huang; Caihua Zhu; Yu Sun; Gang Xie; Gerardo G. Mackenzie; George Qiao; Despina Komninou; Basil Rigas

Non-steroidal anti-inflammatory drugs such as sulindac are promising chemoprevention agents against colon cancer, but their weak potency and side effects limit their use for both chemoprevention and chemotherapy. Here, we evaluated the effect of a new sulindac derivative, phospho-sulindac or OXT-922, on the growth of human cancer cell lines and its mechanism of action. OXT-922 inhibited the growth of human cancer cell lines originating from colon, pancreas and breast ~11- to 30-fold more potently than sulindac. This effect was mediated by a strong cytokinetic effect. Compared with control, OXT-922 inhibited cell proliferation by up to 67%, induced apoptosis 4.1-fold over control and blocked the G(1) to S cell cycle phase transition. OXT-922 suppressed the levels of cell cycle regulating proteins, including cyclins D(1) and D(3) and Cyclin-dependent kinases (CDK) 4 and 6. The levels of intracellular reactive oxygen species (ROS), especially those of mitochondrial O₂ⁱ⁻, were markedly elevated (5.5-fold) in response to OXT-922. ROS collapsed the mitochondrial membrane potential and triggered apoptosis, which was largely abrogated by antioxidants. OXT-922 suppressed nuclear factor-kappaB activation and downregulated thioredoxin-1 expression. It also suppressed the production of prostaglandin E(2) and decreased cyclooxygenase-1 expression. Similar to sulindac, OXT-922 enhanced spermidine/spermine N(1)-acetyltransferase activity, reduced the cellular polyamine content and synergized with difluoromethylornithine to inhibit cancer cell proliferation and induce apoptosis. Our results suggest that OXT-922 possesses promising anticancer properties and deserves further evaluation.


Stem Cells | 2012

Phosphosulindac (OXT‐328) Selectively Targets Breast Cancer Stem Cells In Vitro and in Human Breast Cancer Xenografts

Caihua Zhu; Ka-Wing Cheng; Nengtai Ouyang; Liqun Huang; Yu Sun; Panayiotis P. Constantinides; Basil Rigas

Pharmacological targeting of breast cancer stem cells (CSCs) is highly promising for the treatment of breast cancer, as the small population of CSCs appears responsible for tumor initiation and progression and also for resistance to conventional treatment. Here we report that the novel phosphosulindac (OXT‐328, PS) selectively and effectively eliminates breast CSCs both in vitro and in vivo. PS reduced cell proliferation and induced apoptosis in various breast CSCs. Breast CSCs are resistant to conventional cancer drugs but are sensitive to PS. Long‐term treatment of mixtures of cultured breast CSCs and breast cancer cells with PS preferentially eliminated the CSCs. PS impaired the ability of CSCs to form mammospheres and markedly suppressed the expression of CSC‐related genes. More importantly, PS prevented by half (p =.06) the formation of tumors initiated by CSCs in immunodeficient mice, and inhibited by 83% (p <.05) the growth of already formed breast cancer xenografts, reducing the proportion of CSCs in them. PS suppressed the Wnt/β‐catenin pathway by stimulating the degradation of β‐catenin and its relocalization to the cell membrane and also blocked the epithelial–mesenchymal transition and the generation of breast CSCs. These results indicate that PS has a strong inhibitory effect against breast cancer, acting, at least in part, by targeting CSCs through a signaling mechanism involving Wnt signaling. STEM Cells2012;30:2065–2075

Collaboration


Dive into the Liqun Huang's collaboration.

Top Co-Authors

Avatar

Basil Rigas

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Xie

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Sun

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi C. Wong

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge