Lirong Guo
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lirong Guo.
Asian Journal of Andrology | 2009
Ling Zhang; Shan Wu; Lirong Guo; Xuejian Zhao
We have analysed the reasons for the low reported incidence of prostate cancer in China and argue for early diagnosis and treatment of this disease. According to the 2002 database of the International Agency for Research on Cancer (IARC), the age-standardized incidence of prostate cancer in China is 1.6/10(5) person years (PY), with a mortality rate of 1.0/10(5) PY and mortality-to-incidence rate ratio (MR/IR) = 0.63. The MR/IR ratio of prostate cancer in China was found to be higher than the average in Asia (MR/IR = 0.57) and much higher than that in North America (MR/IR = 0.13). These data indicate that in China most prostate cancers were in the advanced stages at the time of diagnosis, and that patients had a short survival time thereafter. In 2004, Stamey et al. reported a retrospective American study of prostate cancer for the years 1983-2003. It was shown that most cases of prostate cancer detected by prostate-specific antigen (PSA) screening were in the advanced stage at the start of this 20-year period. These early follow-up data are quite similar to the results obtained from mass PSA screening of elderly men in Changchun, China. However, after the American programmes for early diagnosis and treatment of prostate cancer were accepted, tumours were diagnosed at earlier stages. On the basis of these findings, mass screening should be performed in the whole of China using serum PSA to facilitate early diagnosis and treatment of prostate cancer.
Science China-life Sciences | 2009
Yan Meng; Chunyan Zhao; Xuexin Zhang; Huashan Zhao; Lirong Guo; Bin Lü; Xuejian Zhao; BaoXue Yang
UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 ± 4.2), (45.5 ± 6.9) and (43.8 ± 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 ± 2.9), (38.7 ± 5.6) and (38.2 ± 7.3) ms, P<0.05). The atrial ventricular heart block type II and III only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17 ± 10.56) and (101.89 ± 9.54) mV/s) vs those in wild-type mice (vs (110.51 ± 10.38) and (109.53 ± 10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83 ± 11.17) and (195.43 ± 16.41) ms) vs that in wild-type mice ((108.27 ± 10.85) and (171.00 ± 15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (−8.80 ± 0.92) nA vs that in wild-type mice ((−5.98 ± 1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.
American Journal of Physiology-heart and Circulatory Physiology | 2012
Amit Modgil; Qi Zhang; Ajeeth Pingili; Neha Singh; Fanrong Yao; Jingyan Ge; Lirong Guo; Chengluan Xuan; Stephen T. O'Rourke; Chengwen Sun
Several studies have focused on the beneficial effects of peripheral angiotensin-(1-7) [Ang-(1-7)] in the regulation of cardiovascular function, showing its counterregulatory effect against the actions of angiotensin II (ANG II). However, its actions in the central nervous system are not completely understood. In the present study, we investigated the intracellular mechanisms underlying the action of ANG-(1-7) using the patch-clamp technique in neurons cultured from the hypothalamus of neonatal spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Superfusion of neurons with ANG II (100 nM) significantly increased neuronal firing in both strains of rats, and this chronotropic effect of ANG II was significantly enhanced in prehypertensive SHR neurons compared with WKY rat neurons. The enhanced chronotropic effect of ANG II was attenuated by a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY 294002 (10 μM). Superfusion of neurons with ANG-(1-7) (100 nM) did not alter the neuronal firing rate in either SHR or WKY neurons; however, it significantly attenuated the chronotropic action of ANG II exclusively in prehypertensive SHR neurons. This counterregulatory effect of ANG-(1-7) on ANG II action in prehypertensive SHR neurons was attenuated by cotreatment with either A-779, a Mas receptor antagonist, or bisperoxovanadium, a phosphatase and tensin homologue deleted on chromosome ten (PTEN) inhibitor. In addition, incubation of WKY and prehypertensive SHR neurons with ANG-(1-7) significantly increased PTEN activity. The data demonstrate that ANG-(1-7) counterregulates the chronotropic action of ANG II via a PTEN-dependent signaling pathway in prehypertensive SHR neurons.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Neha Singh; Shrinidh Joshi; Lirong Guo; Matt Baker; Yan Li; Ronald K. Castellano; Mohan K. Raizada; Yagna Jarajapu
CD34(+) stem/progenitor cells have been identified as a promising cell population for the autologous cell-based therapies in patients with cardiovascular disease. The counter-regulatory axes of renin angiotensin system, angiotensin converting enzyme (ACE)/Ang II/angiotensin type 1 (AT1) receptor and ACE2/Ang-(1-7)/Mas receptor, play an important role in the cardiovascular repair. This study evaluated the expression and vascular repair-relevant functions of these two pathways in human CD34(+) cells. CD34(+) cells were isolated from peripheral blood mononuclear cells (MNCs), obtained from healthy volunteers. Expression of ACE, ACE2, AT1, and angiotensin type 2 and Mas receptors were determined. Effects of Ang II, Ang-(1-7), Norleu(3)-Ang-(1-7), and ACE2 activators, xanthenone (XNT) and diminazene aceturate (DIZE) on proliferation, migration, and adhesion of CD34(+) cells were evaluated. ACE2 and Mas were relatively highly expressed in CD34(+) cells compared with MNCs. Ang-(1-7) or its analog, Norleu(3)-Ang-(1-7), stimulated proliferation of CD34(+) cells that was associated with decrease in phosphatase and tensin homologue deleted on chromosome 10 levels and was inhibited by triciribin, an AKT inhibitor. Migration of CD34(+) cells was enhanced by Ang-(1-7) or Norleu(3)-Ang-(1-7) that was decreased by a Rho-kinase inhibitor, Y-27632. In the presence of Ang II, XNT or DIZE enhanced proliferation and migration that were blocked by DX-600, an ACE2 inhibitor. Treatment of MNCs with Ang II, before the isolation of CD34(+) cells, attenuated the proliferation and migration to stromal derived factor-1α. This attenuation was reversed by apocynin, an NADPH oxidase inhibitor. Adhesion of MNCs or CD34(+) cells to fibronectin was enhanced by Ang II and was unaffected by Ang-(1-7). This study suggests that ACE2/Ang-(1-7)/Mas pathway stimulates functions of CD34(+) cells that are cardiovascular protective, whereas Ang II attenuates these functions by acting on MNCs. These findings imply that activation of ACE2/Ang-(1-7)/Mas axis is a promising approach for enhancing reparative outcomes of cell-based therapies.
American Journal of Physiology-heart and Circulatory Physiology | 2017
Lirong Guo; Ankang Yin; Qi Zhang; Tiecheng Zhong; Stephen T. O’Rourke; Chengwen Sun
The objectives of the present study were to investigate the effect of ANG-(1-7) on the development of cardiac hypertrophy and to identify the intracellular mechanism underlying this action of ANG-(1-7). Blood pressure and heart rate were recorded using radiotelemetry before and after chronic subcutaneous infusion of control (PBS), ANG II, ANG-(1-7), or ANG II + ANG-(1-7) for 4 wk in normotensive rats. Chronic administration of ANG-(1-7) did not affect either basal blood pressure or the ANG II-induced elevation in blood pressure. However, ANG-(1-7) significantly attenuated ANG II-induced cardiac hypertrophy and perivascular fibrosis in these rats. These effects of ANG-(1-7) were confirmed in cultured cardiomyocytes, in which ANG-(1-7) significantly attenuated ANG II-induced increases in cell size. This protective effect of ANG-(1-7) was significantly attenuated by pretreatment with A779 (a Mas receptor antagonist) or Mito-TEMPO (a mitochondria-targeting superoxide scavenger) as well as blockade of Sirt3 (a deacetylation-acting protein) by viral vector-mediated overexpression of sirtuin (Sirt)3 short hairpin (sh)RNA. Western blot analysis demonstrated that treatment with ANG-(1-7) dramatically increased Sirt3 expression. In addition, ANG-(1-7) attenuated the ANG II-induced increase in mitochondrial ROS generation, an effect that was abolished by A779 or Sirt3 shRNA. Moreover, ANG-(1-7) increased FoxO3a deacetylation and SOD2 expression, and these effects were blocked by Sirt3 shRNA. In summary, the protective effects of ANG-(1-7) on ANG II-induced cardiac hypertrophy and increased mitochondrial ROS production are mediated by elevated SOD2 expression via stimulation of Sirt3-dependent deacetylation of FoxO3a in cardiomyocytes. Thus, activation of the ANG-(1-7)/Sirt3 signaling pathway could be a novel therapeutic strategy in the management of cardiac hypertrophy and associated complications.NEW & NOTEWORTHY Chronic subcutaneous ANG-(1-7) has no effect on ANG II-induced elevations in blood pressure but significantly attenuates ANG II-induced cardiac hypertrophy and fibrosis by a mitochondrial ROS-dependent mechanism. This protective effect of ANG-(1-7) against the action of ANG II action is mediated by stimulation of sirtuin-3-mediated deacetylation of FoxO3a, which triggers SOD2 expression.
PLOS ONE | 2013
Amit Modgil; Lirong Guo; Stephen T. O’Rourke; Chengwen Sun
Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM) cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca2+-activated K+ (BKCa) channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BKCa channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM) caused concentration-dependent inhibition of BKCa in VSM cells. Apelin-13 (0.1 µM) significantly decreased BKCa current density from 71.25±8.14 pA/pF to 44.52±7.10 pA/pF (n=14 cells, P<0.05). This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM) decreased the open-state probability (NPo) of BKCa channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1µM) did not alter the NPo of BKCa channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BKCa. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BKCa current density. In addition, treatment of arteries with apelin-13 (0.1 µM) significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BKCa channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.
Biochemical and Biophysical Research Communications | 2015
Lirong Guo; Jie Meng; Chengluan Xuan; Jingyan Ge; Wenzhu Sun; Stephen T. O'Rourke; Chengwen Sun
Elevated Na(+) concentration ([Na(+)]) in the cerebrospinal fluid (CSF) contributes to the development of salt-sensitive hypertension. CSF is formed by the choroid plexus (CP) in cerebral ventricles, and [Na(+)] in CSF is controlled by transporters in CP. Here, we examined the effect of high salt diet on the expression of urea transporters (UTs) in the CP of Dahl S vs Dahl R rats using real time PCR. High salt intake (8%, for 2 weeks) did not alter the mRNA levels of UT-A (encoded by SLC14A2 gene) in the CP of either Dahl S or Dahl R rats. In contrast, the mRNA levels of UT-B (encoded by SLC14A1 gene) were significantly reduced in the CP of Dahl S rats on high salt diet as compared with Dahl R rats or Dahl S rats on normal salt diet. Reduced UT-B expression was associated with increased [Na(+)] in the CSF and elevated mean arterial pressure (MAP) in Dahl S rats treated with high salt diet, as measured by radiotelemetry. High salt diet-induced reduction in UT-B protein expression in the CP of Dahl S rats was confirmed by Western blot. Immunohistochemistry using UT-B specific antibodies demonstrated that UT-B protein was expressed on the epithelial cells in the CP. These data indicate that high salt diet induces elevations in CSF [Na(+)] and in MAP, both of which are associated with reduced UT-B expression in the CP of Dahl S rats, as compared with Dahl R rats. The results suggest that altered UT-B expression in the CP may contribute to an imbalance of water and electrolytes in the CSF of Dahl S rats on high salt diet, thereby leading to alterations in MAP.
Sub-cellular biochemistry | 2014
Baoxue Yang; Xin Li; Lirong Guo; Yan Meng; Zixun Dong; Xuejian Zhao
The urea transporter UT-B is expressed in multiple tissues including erythrocytes, kidney, brain, heart, liver, colon, bone marrow, spleen, lung, skeletal muscle, bladder, prostate, and testis in mammals. Phenotype analysis of UT-B-null mice has confirmed that UT-B deletion results in a urea-selective urine-concentrating defect (see Chap. 9 ). The functional significance of UT-B in extrarenal tissues studied in the UT-B-null mouse is discussed in this chapter. UT-B-null mice present depression-like behavior with urea accumulation and nitric oxide reduction in the hippocampus. UT-B deletion causes a cardiac conduction defect, and TNNT2 and ANP expression changes in the aged UT-B-null heart. UT-B also plays a very important role in protecting bladder urothelium from DNA damage and apoptosis by regulating the urea concentration in urothelial cells. UT-B functional deficiency results in urea accumulation in the testis and early maturation of the male reproductive system. These results show that UT-B is an indispensable transporter involved in maintaining physiological functions in different tissues.
Proteomics | 2014
Yanwei Du; Yan Meng; Jun Zhu; Le Kang; Xiaolong Jia; Lirong Guo; Ling Zhang; Mingliang Ye; Lianghai Hu; Xuejian Zhao; Jingkai Gu; Baoxue Yang; Hanfa Zou
In previous research, we showed that 16‐week‐old urea transporter B (UT‐B) null mice have an atrial–ventricular conduction block, and hypothesized myocardial mitochondrial dysfunction. To investigate the mechanism of this block, we examined the proteomic differences in the myocardial mitochondria of UT‐B null and wild‐type mice with nanoscale LC–MS/MS. Of 26 proteins clearly downregulated in the UT‐B null mice, 15 are involved in complexes I, III, IV, and V of the respiratory chain, which would strongly reduce the activity of the electron transport chain. Excess electrons from complexes I and III pass directly to O2 to generate ROS and deplete ROS‐scavenging enzymes. Myocardial intracellular ROS were significantly higher in UT‐B null mice than in wild‐type mice (p < 0.01), constituting an important cause of oxidative stress injury in the myocardia of UT‐B null mice. The mitochondrial membrane potential (ΔΨm) was also lower in UT‐B null mice than in wild‐type mice (p < 0.05), causing oxidative phosphorylation dysfunction of complex V and insufficient ATP in the myocardial cells of UT‐B null mice. HADHA (a trifunctional protein) and HSP60 were also downregulated in the UT‐B null myocardial mitochondria. These results confirm that mitochondrial dysfunction underlies the pathogenesis of the atrial–ventricular conduction block in UT‐B null mice.
American Journal of Physiology-cell Physiology | 2007
Lirong Guo; Dan Zhao; Yuanlin Song; Yan Meng; Huashan Zhao; Xuejian Zhao; Baoxue Yang