Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lirong Han is active.

Publication


Featured researches published by Lirong Han.


Brazilian Journal of Microbiology | 2012

Alkali pretreated of wheat straw and its enzymatic hydrolysis

Lirong Han; Juntao Feng; Shuangxi Zhang; Zhiqing Ma; Yonghong Wang; Xing Zhang

The efficiency of enzymatic hydrolysis of cellulose can be improved by various pretreatments of the substrate. In order to increase the efficiency of enzymatic saccharification of the wheat straw, we determined the effect of different pretreatments on the physical structure, chemical components and enzymatic saccharification of wheat straw. Our results showed that combination of grinding and sodium hydroxide (NaOH) treatment had high effect on the enzymatic hydrolysis of wheat straws. The optimal pretreatment condition was to grind the wheat straws into the sizes of 120 meshes followed by treatment with 1.0% NaOH for 1.5 h (121°C/15psi). Under this condition, the cellulose content of wheat straw was increased by 44.52%, while the content of hemicellulose and lignin was decreased by 44.15% and 42.52%, respectively. Scanning Electronic Microscopy and infrared spectrum analyses showed that significant changes occurred in the structure of wheat straws after pretreatment, which is favorable for the hydrolysis and saccharification. Cellulase produced by Penicillium waksmanii F10–2 was used to hydrolyze the pretreated wheat straw and the optimal condition was determined to be 30 h of enzymatic reaction under the temperature of 55°C, pH 5.5 and substrate concentration of 3%.


Pesticide Biochemistry and Physiology | 2017

Sensitivity and biochemical characteristics of Sclerotinia sclerotiorum to propamidine

Yong Wang; Yang Sun; Ying Zhang; Yinxing Zhang; Lirong Han; Xing Zhang; Juntao Feng

Propamidine is an aromatic diamidine compound. In the current study, baseline sensitivity of Sclerotinia sclerotiorum to propamidine was determined using 78 strains collected from the oilseed rape fields without a previous history of propamidine usage. The median effective concentration (EC50) values for propamidine inhibiting mycelial growth ranged from 0.406 to 3.647μg/mL, with a mean of 1.616±0.217μg/mL. There was no correlation between sensitivity to propamidine and sensitivity to dimethachlon or carbendazim. After treated with propamidine, mycelia were thinner with irregular distortion and more branches; cell wall became thicker with uneven distribution of cytoplasm than untreated control. In addition, sclerotia production, cell membrane permeability and oxalic acid content significantly decreased. On detached oilseed rape leaves, propamidine exhibited better control efficacy than carbendazim at the same concentration whether the leaves were inoculated with carbendazim-sensitive or resistant strains. All the results showed that propamidine exhibited strong antifungal activity and potential application in controlling S. sclerotiorum. Importantly, these data will provide more information on understanding the mode of action of propamidine against S. sclerotiorum and should be valuable for development of new antifungal drugs.


International Journal of Biological Macromolecules | 2015

Purification and characterization of a novel glycoprotein from Streptomyces sp. ZX01.

Guoqiang Zhang; Lirong Han; Guifeng Zhang; Xing Zhang; Juntao Feng

A novel glycoprotein GP-1 with antiviral activity against plant virus was isolated from the fermentation broth of the actinomycete Streptomyces sp. ZX01. MALDI-TOF-MS proved that molecular weight of GP-1 approximately was 8.5 kDa. GP-1 was a heat-sensitive glycoprotein with decreasing antiviral activity after treated from 80 °C to 100 °C for 30 min. GP-1 contained 40.23% carbohydrate with N-linked and O-linked glycan. FT-IR and NMR spectra proved that GP-1 contained protein and carbohydrate portions with α-D-(1,6)-glucose residues. Circular dichroism revealed that GP-1 was a glycoprotein with a large unordered content. Moreover, protein sequencing was predicted by using MALDI-TOF-MS and Mascot search. These results suggested that glycoprotein GP-1 could be used as a novel natural antiviral agent in agricultural industry.


PLOS ONE | 2012

Statistical Optimization of Process Variables for Antibiotic Activity of Xenorhabdus bovienii

Xiangling Fang; Lirong Han; Xue-Qiang Cao; Ming-Xuan Zhu; Xing Zhang; Yong-Hong Wang

The production of secondary metabolites with antibiotic properties is a common characteristic to entomopathogenic bacteria Xenorhabdus spp. These metabolites not only have diverse chemical structures but also have a wide range of bioactivities of medicinal and agricultural interests. Culture variables are critical to the production of secondary metabolites of microorganisms. Manipulating culture process variables can promote secondary metabolite biosynthesis and thus facilitate the discovery of novel natural products. This work was conducted to evaluate the effects of five process variables (initial pH, medium volume, rotary speed, temperature, and inoculation volume) on the antibiotic production of Xenorhabdus bovienii YL002 using response surface methodology. A 25–1 factorial central composite design was chosen to determine the combined effects of the five variables, and to design a minimum number of experiments. The experimental and predicted antibiotic activity of X. bovienii YL002 was in close agreement. Statistical analysis of the results showed that initial pH, medium volume, rotary speed and temperature had a significant effect (P<0.05) on the antibiotic production of X. bovienii YL002 at their individual level; medium volume and rotary speed showed a significant effect at a combined level and was most significant at an individual level. The maximum antibiotic activity (287.5 U/mL) was achieved at the initial pH of 8.24, medium volume of 54 mL in 250 mL flask, rotary speed of 208 rpm, temperature of 32.0°C and inoculation volume of 13.8%. After optimization, the antibiotic activity was improved by 23.02% as compared with that of unoptimized conditions.


International Journal of Biological Macromolecules | 2016

Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01

Guoqiang Zhang; Juntao Feng; Lirong Han; Xing Zhang

Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture.


Biocontrol Science and Technology | 2015

Evaluation of two Streptomyces spp. and compost for growth promotion and biocontrol potential against Rhizoctonia solani on pepper

Haibin Wang; Lirong Han; Juntao Feng; Xing Zhang

The individual and synergistic potentials of two Streptomyces strains and compost for growth promotion and biocontrol against dumping off caused by Rhizoctonia solani on pepper were evaluated. Results showed that the compost can greatly enhance pepper growth while the combination of the two strains and compost was most efficient for the disease suppression.


Molecules | 2018

Optimization of Fermentation Conditions and Bench-Scale for Improvement of a Novel Glycoprotein GP-1 Production by Streptomyces kanasenisi ZX01

Yong Zhou; Xin Zhou; Dai-Lin Yu; Bu Sang; Juntao Feng; Lirong Han; Xing Zhang

GP-1 is a novel glycoprotein produced by Streptomyces kanasenisi ZX01 that was isolated from soil near Kanas Lake with significant bioactivity against tobacco mosaic virus. However, extremely low fermentation production has largely hindered further research and market applications on glycoprotein GP-1. In this study, response surface methodology was used to optimize fermentation conditions in a shake flask for higher glycoprotein GP-1 production. When the optimized fermentation conditions were inoculum volume of 6%, initial pH of 6.5, and rotating speed of 150 rpm, glycoprotein GP-1 production could reach 0.9253 mg/L, which was increased by 52.14% compared to the original conditions. In addition, scale-up fermentation was conducted in a 5-L bioreactor to preliminarily explore the feasibility for mass production of glycoprotein GP-1 in a large fermentor, obtaining GP-1 production of 2.54 mg/L under the same conditions, which was 2.75 times higher than the production obtained from a shake flask of 0.9253 mg/L. This work will be helpful to improve GP-1 production on a large scale and lay the foundations for developing it as a novel agent against plant virus.


Molecules | 2018

Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient

Yong Zhou; Lirong Han; Hong-Wei He; Bu Sang; Dai-Lin Yu; Juntao Feng; Xing Zhang

The effects of temperature, agitation and aeration on glycoprotein GP-1 production by Streptomyces kanasenisi ZX01 in bench-scale fermentors were systematically investigated. The maximum final GP-1 production was achieved at an agitation speed of 200 rpm, aeration rate of 2.0 vvm and temperature of 30 °C. By using a dynamic gassing out method, the effects of agitation and aeration on volumetric oxygen transfer coefficient (kLa) were also studied. The values of volumetric oxygen transfer coefficient in the logarithmic phase increased with increase of agitation speed (from 14.53 to 32.82 h−1) and aeration rate (from 13.21 to 22.43 h−1). In addition, a successful scale-up from bench-scale to pilot-scale was performed based on volumetric oxygen transfer coefficient, resulting in final GP-1 production of 3.92, 4.03, 3.82 and 4.20 mg/L in 5 L, 15 L, 70 L and 500 L fermentors, respectively. These results indicated that constant volumetric oxygen transfer coefficient was appropriate for the scale-up of batch fermentation of glycoprotein GP-1 by Streptomyces kanasenisi ZX01, and this scale-up strategy successfully achieved 100-fold scale-up from bench-scale to pilot-scale fermentor.


Molecules | 2018

Optimization of Production Conditions for Protoplasts and Polyethylene Glycol-Mediated Transformation of Gaeumannomyces tritici

Mei Wang; Jie Zhang; Lanying Wang; Lirong Han; Xing Zhang; Juntao Feng

Take-all, caused by Gaeumannomyces tritici, is one of the most important wheat root diseases worldwide, as it results in serious yield losses. In this study, G. tritici was transformed to express the hygromycin B phosphotransferase using a combined protoplast and polyethylene glycol (PEG)-mediated transformation technique. Based on a series of single-factor experimental results, three major factors—temperature, enzyme lysis time, and concentration of the lysing enzyme—were selected as the independent variables, which were optimized using the response surface methodology. A higher protoplast yield of 9.83 × 107 protoplasts/mL was observed, and the protoplast vitality was also high, reaching 96.27% after optimization. Protoplasts were isolated under the optimal conditions, with the highest transformation frequency (46–54 transformants/μg DNA). Polymerase chain reaction and Southern blotting detection indicated that the genes of hygromycin phosphotransferase were successfully inserted into the genome of G. tritici. An optimised PEG-mediated protoplast transformation system for G. tritici was established. The techniques and procedures described will lay the foundation for establishing a good mutation library of G. tritici and could be used to transform other fungi.


Genes | 2017

Genome-Wide Analysis Reveals the Secondary Metabolome in Streptomyces kanasensis ZX01

Guoqiang Zhang; Dai-Lin Yu; Bu Sang; Juntao Feng; Lirong Han; Xing Zhang

Streptomyces kanasensis ZX01 produces some antibiotics and a glycoprotein with antiviral activity. To further evaluate its biosynthetic potential, here we sequenced the 7,026,279 bp draft genome of S. kanasensis ZX01 and analyzed all identifiable secondary gene clusters for controlling natural products. More than 60 putative clusters were found in S. kanasensis ZX01, the majority of these biosynthetic loci are novel. In addition, the regulators for secondary metabolism in S. kanasensis ZX01 were abundant. The global regulator nsdA not only controls biosynthesis of some antibiotics, but also enhances production of glycoprotein GP-1 with antiviral activity. This study importantly reveals the powerful interplay between genomic analysis and studies of traditional natural product purification/production increasing.

Collaboration


Dive into the Lirong Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guifeng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangling Fang

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge