Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lirong Teng is active.

Publication


Featured researches published by Lirong Teng.


Expert Opinion on Drug Delivery | 2012

Clinical translation of folate receptor-targeted therapeutics.

Lesheng Teng; Jing Xie; Lirong Teng; Robert J. Lee

Introduction: Folate receptor−α (FR−α) has been established as a membrane marker for ovarian cancer. In addition, it is frequently overexpressed in other major types of epithelial tumors. FR−α-based tumor-targeted therapy and drug carriers have been an active area of laboratory research for more than 20 years. Recently, there has been a great increase in the effort to finally translate this promising technology into the clinic and bring FR-targeted therapeutics into the market. Areas covered: Two FR-targeted therapeutic agents have moved into Phase III clinical trials, the monoclonal antibody farletuzumab and the low molecular weight vintafolide, combined with etarfolatide as a companion imaging agent, representing two alternative strategies for targeting the FR. Expert opinion: Each of the two strategies has advantages and disadvantages. Identification of the best target patient population is likely critical to the ultimate success of FR-targeted agents in the clinic. A successful clinical strategy may require the integration between FR expression analysis and an optimal combination of FR-targeted therapy and standard chemotherapy. Advancement into Phase III trials and the ongoing clinical development of several additional folate conjugates are likely to usher in a new era of clinical translation and validation of FR-targeted imaging and therapeutic agents.


BioMed Research International | 2014

Studies on the Antidiabetic Activities of Cordyceps militaris Extract in Diet-Streptozotocin-Induced Diabetic Sprague-Dawley Rats

Yuan Dong; Tianjiao Jing; Qingfan Meng; Chungang Liu; Shuang Hu; Yihang Ma; Yan Liu; Jiahui Lu; Yingkun Cheng; Di Wang; Lirong Teng

Due to substantial morbidity and high complications, diabetes mellitus is considered as the third “killer” in the world. A search for alternative antidiabetic drugs from herbs or fungi is highly demanded. Our present study aims to investigate the antidiabetic activities of Cordyceps militaris on diet-streptozotocin-induced type 2 diabetes mellitus in rats. Diabetic rats were orally administered with water extract or alcohol extract at 0.05 g/kg and 2 g/kg for 3 weeks, and then, the factors levels related to blood glucose, lipid, free radicals, and even nephropathy were determined. Pathological alterations on liver and kidney were examined. Data showed that, similar to metformin, Cordyceps militaris extracts displayed a significant reduction in blood glucose levels by promoting glucose metabolism and strongly suppressed total cholesterol and triglycerides concentration in serum. Cordyceps militaris extracts exhibit antioxidative effects indicated by normalized superoxide dismutase and glutathione peroxidase levels. The inhibitory effects on blood urea nitrogen, creatinine, uric acid, and protein revealed the protection of Cordyceps militaris extracts against diabetic nephropathy, which was confirmed by pathological morphology reversion. Collectively, Cordyceps militaris extract, a safe pharmaceutical agent, presents excellent antidiabetic and antinephropathic activities and thus has great potential as a new source for diabetes treatment.


International Journal of Nanomedicine | 2013

Development of a novel niosomal system for oral delivery of Ginkgo biloba extract

Ye Jin; Jingyuan Wen; Sanjay Garg; Da Liu; Yulin Zhou; Lirong Teng; Weiyu Zhang

Background The aim of this study was to develop an optimal niosomal system to deliver Ginkgo biloba extract (GbE) with improved oral bioavailability and to replace the conventional GbE tablets. Methods In this study, the film dispersion-homogenization method was used to prepare GbE niosomes. The resulting GbE niosome suspension was freeze-dried or spray-dried to improve the stability of the niosomes. GbE-loaded niosomes were formulated and characterized in terms of their morphology, particle size, zeta potential, entrapment efficiency, and angle of repose, and differential scanning calorimetry analysis was performed. In vitro release and in vivo distribution studies were also carried out. Results The particle size of the optimal delivery system prepared with Tween 80, Span 80, and cholesterol was about 141 nm. There was a significant difference (P < 0.05) in drug entrapment efficiency between the spray-drying method (about 77.5%) and the freeze-drying method (about 50.1%). The stability study revealed no significant change in drug entrapment efficiency for the GbE niosomes at 4°C and 25°C after 3 months. The in vitro release study suggested that GbE niosomes can prolong the release of flavonoid glycosides in phosphate-buffered solution (pH 6.8) for up to 48 hours. The in vivo distribution study showed that the flavonoid glycoside content in the heart, lung, kidney, brain, and blood of rats treated with the GbE niosome carrier system was greater than in the rats treated with the oral GbE tablet (P < 0.01). No flavonoid glycosides were detected in the brain tissue of rats given the oral GbE tablets, but they were detected in the brain tissue of rats given the GbE niosomes. Conclusion Niosomes are a promising oral system for delivery of GbE to the brain.


International Journal of Pharmaceutics | 2013

Development of liposomal ginsenoside Rg3: Formulation optimization and evaluation of its anticancer effects

Huan Yu; Lirong Teng; Qingfan Meng; Yuhuan Li; Xiaocheng Sun; Jiahui Lu; Robert J. Lee; Lesheng Teng

The Ginsenoside Rg3 has been shown to possess antiangiogenic and anticancer properties. Because of its limited water solubility, we decided to design and synthesize liposomal Rg3 (L-Rg3), to optimize preparation conditions, and to investigate further whether liposome could enhance the anticancer activity of Rg3. L-Rg3 was prepared using a film-dispersion method and the preparation conditions were optimized with response surface methodology (RSM). The mean encapsulation efficiency (EE) of 82.47% was close to the predicted value of 89.69%. Therefore, the optimized preparation condition was predicted correctly. We evaluated the cytotoxicity, pharmacokinetics, biodistribution and antitumor activities of L-Rg3. HepG2 and A549 cells were treated with Rg3 or L-Rg3 at different concentrations in vitro. Pharmacokinetics and biodistribution studies were carried out in Wistar rats. Tumor model was established by inoculating a suspension of A549 cells into BALB/c nude mice. The mice were divided into Saline, Rg3 solution, and L-Rg3 groups with the drug given by i.p. injection. Survival of the mice and tumor volume were monitored. In addition, CD34 immunohistochemical analysis was used for measuring microvessel density (MVD) of the tumor tissues. The cytotoxicity and ratio of tumor inhibition of L-Rg3 group were significantly higher than the Rg3 solution group. MVD values in the Rg3 solution and L-Rg3 groups decreased, especially in the L-Rg3 group. Compared to Rg3 solution, the L-Rg3 showed increased Cmax and AUC of Rg3 by 1.19- and 1.52-fold, respectively. This liposomal formulation could potentially produce a viable clinical agent for improving the anticancer activity of Rg3.


Pharmaceutical Development and Technology | 2011

Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation

Zhengxing Su; Yanan Shi; Lesheng Teng; Xiang Li; Lexi Wang; Qingfan Meng; Lirong Teng; Youxin Li

The preparation and investigation of sustained-release risperidone-encapsulated microspheres using erodible poly(D, L-lactide-co-glycolide) (PLGA) of lower molecular weight were performed and compared to that of commercial Risperdal Consta™ for the treatment of schizophrenia. The research included screening and optimizing of suitable commercial polymers of lower molecular weight PLGA50/50 or the blends of these PLGA polymers to prepare microspheres with zero-order release kinetics properties. Solvent evaporation method was applied here while studies of the risperidone loaded microsphere were carried out on its drug encapsulation capacity, morphology, particle size, as well as in vitro release profiles. Results showed that microspheres prepared using 50504A PLGA or blends of 5050-type PLGAs exerted spherical and smooth morphology, with a higher encapsulation efficiency and nearly zero-order release kinetics. These optimized microspheres showed great potential for a better depot preparation than the marketed Risperdal Consta™, which could further improve the patient compliance.


International Journal of Pharmaceutics | 2010

Studies on the preparation, characterization and pharmacological evaluation of tolterodine PLGA microspheres.

Fengying Sun; Cheng Sui; Lesheng Teng; Ximing Liu; Lirong Teng; Qingfan Meng; Youxin Li

In this study, poly(d,l-lactide-co-glycolide) (PLGA) microspheres of tolterodine depot formulation were prepared using oil in water (o/w) method to investigate their potential pharmacokinetic and pharmacodynamic advantages over tolterodine l-tartrate tablets. Morphological studies of the microspheres showed a spherical shape and smooth surface with mean size of 50.69-83.01 microm, and the encapsulation efficiency was improved from 62.55 to 79.10% when the polymer concentration increased from 180 to 230 mg/ml. The addition of stearic or palmitic acids could significantly raise the drug entrapment efficiency but only slightly affected the in vitro release. A low initial burst followed by a proximately constant release of tolterodine was noticed in the in vitro release profiles. The in vivo study was carried out by intramuscular (i.m.) administration of tolterodine-loaded microspheres on beagle dogs, and a sustained release of drug from the PLGA microspheres was achieved until the 18th day with a low initial burst. Since the absence of hepatic first pass metabolism, only a single active compound-tolterodine was detected in the plasma. This avoided the coexistence of two active compounds in plasma in the case of oral administration of tolterodine, which may lead to a difficulty in dose control due to the different metabolic capacity of patients. In the pharmacodynamic study, the influence of tolterodine PLGA microspheres on the inhibition of carbachol-induced rat urinary bladder contraction was more significant than that of tolterodine l-tartrate tablets. There were invisible changes in rat bladder slices between tolterodine-loaded PLGA microspheres group and tolterodine l-tartrate tablets group. These results indicate that the continuous inhibition of muscarinic receptor may offer an alternative therapy of urge incontinence.


Drug Development and Industrial Pharmacy | 2014

Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin

Guanyu Chen; Danhui Li; Ye Jin; Weiyu Zhang; Lirong Teng; Craig R. Bunt; Jingyuan Wen

Abstract Background: (+)-catechin, as the most common catechin isomer, is recognized to be an antioxidant which benefits the skin in many ways. The purpose of the present study was to prepare and evaluate a suitable liposomal delivery systems for (+)-catechin topical application. Methods: In this study, catechin-loaded conventional liposomal delivery system, deformable conventional liposomal delivery system and deformable liposomes prepared by reverse-phase evaporation (REV) method were compared. The three systems were characterized for liposome particle size, zeta-potential, entrapment efficiency, drug release, permeability across porcine skin and catechin deposition in the skin. Results: It was revealed that the size of deformable conventional liposomes before freeze-drying and deformable REV liposomes after freeze-drying range from 335.6 ± 71.7 nm to 551.1 ± 53.4 nm, respectively, which were considered to be suitable for skin delivery. The deformable REV liposomes had a higher aqueous volume and thus were able to entrap greater amounts of hydrophilic (+)-catechin (50.0 ± 5.9%) compared to conventional (30.0 ± 3.8%) and deformable conventional liposomes (36.1 ± 4.6%). All liposomal formulations exhibited a prolonged catechin release. Compared to deformable liposomes, the REV deformable liposomes showed a significantly better deposition of (+)-catechin while catechin solution did not permeate into the porcine ear skin. Conclusion: Among all formulations studied, deformable REV liposomes were considered to be favorable for catechin topical delivery.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Nonionic surfactant vesicles for delivery of RNAi therapeutics

Orapan Paecharoenchai; Lesheng Teng; Bryant C. Yung; Lirong Teng; Praneet Opanasopit; Robert J. Lee

RNAi is a promising potential therapeutic approach for many diseases. A major barrier to its clinical translation is the lack of efficient delivery systems for siRNA. Among nonviral vectors, nonionic surfactant vesicles (niosomes) have shown a great deal of promise in terms of their efficacy and toxicity profiles. Nonionic surfactants have been shown to be a superior alternative to phospholipids in several studies. There is a large selection of surfactants with various properties that have been incorporated into niosomes. Therefore, there is great potential for innovation in terms of nisome composition. This article summarizes recent advancements in niosome technology for the delivery of siRNA.


Chemico-Biological Interactions | 2015

Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats

Jingjing Song; Xintong Hou; Xinyu Hu; Chengyu Lu; Chungang Liu; Juan Wang; Wei Liu; Lirong Teng; Di Wang

Albiflorin (AF), separated from the root of Paeonia lactiflora Pall, possesses neuro-protective and anti-inflammatory activities. Based on previous results, our present research aims to investigate the antidepressant-like activity of AF in chronic unpredictable mild stress (CUMS)-induced rat model of depression. Eight weeks of CUMS process successfully established depression-like rat model, as evidenced by the enhanced immobility time in forced swimming test and the reduced sucrose preference, which were reversed to near normal by AF (20 mg/kg and 40 mg/kg) and fluoxetine (3 mg/kg; positive drug) treated. Compared to non-treated depression-like rats, the increased levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HTAA) in serum and hypothalamus, and the reduced expressions of 5-HT1A receptor and 5-HT2A receptor in hypothalamus were observed after AF and fluoxetine oral administration indicating that AF-mediated antidepressant-like effect may be related to the normalization of serotonergic system. Additionally, four-week AF treated rats significantly showed improvement in the reduced dopamine and noradrenalin concentration in serum and hypothalamus as observed on depression-like rats. Altered levels of tyrosine hydroxylase, dopamine D2 receptor and dopamine transporter in hypothalamus reverted to the normal level after treatment with both AF and fluoxetine. All these data demonstrate that not only serotonergic system, but also dopaminergic system is involved in AF-mediated antidepressant-like effect in CUMS-induced rat model of depression.


Brazilian Journal of Medical and Biological Research | 2014

ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

Di Wang; T.Q. Guo; Zhenzuo Wang; Jiahui Lu; D.P. Liu; Qingfan Meng; Jing Xie; X.L. Zhang; Yan Liu; Lirong Teng

The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.

Collaboration


Dive into the Lirong Teng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge