Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lirong Zhong is active.

Publication


Featured researches published by Lirong Zhong.


Journal of Hazardous Materials | 2013

Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation

Lirong Zhong; Martinus Oostrom; Michael J. Truex; Vincent R. Vermeul; James E. Szecsody

Xanthan gum solutions are shear thinning fluids which can be used as delivery media to improve the distribution of remedial amendments injected into heterogeneous subsurface environments. The rheological behavior of the shear thinning solution needs to be known to develop an appropriate design for field injection. In this study, the rheological properties of xanthan gum solutions were obtained under various chemical and environmental conditions relevant to delivery of remedial amendments to groundwater. Higher xanthan concentration raised the absolute solution viscosity and increased the degree of shear thinning. Addition of remedial amendments (e.g., phosphate, sodium lactate, ethyl lactate) caused the dynamic viscosity of xanthan solutions to decrease, but they maintained shear-thinning properties. Use of mono- and divalent salts (e.g., Na(+), Ca(2+)) to increase the solution ionic strength also decreased the dynamic viscosity of xanthan and the degree of shear thinning, although the effect reversed at high xanthan concentrations. A power law analysis showed that the consistency index is a linear function of the xanthan concentration. The degree of shear thinning, however, is best described using a logarithmic function. Mechanisms to describe the observed empiricism have been discussed. In the absence of sediments, xanthan solutions maintained their viscosity for months. However, the solutions lost their viscosity over a period of days to weeks when in contact with site sediment. Loss of viscosity is attributed to physical and biodegradation processes.


Journal of Hazardous Materials | 2011

Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam

Lirong Zhong; James E. Szecsody; Martinus Oostrom; Michael J. Truex; Xin Shen; Xiqing Li

A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Amendment delivery to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the distribution. 2-D saturated flow cell experiments were conducted to evaluate the enhanced fluid sweeping over heterogeneous system, improved contaminant removal, and extended amendment presence in low-permeability zones achieved by shear thinning fluid delivery. Unsaturated column and flow cell experiments were conducted to investigate the improvement on contaminant mobilization mitigation, amendment distribution, and lateral delivery implemented by foam delivery. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping and increased the delivery of remedial amendment into low-perm zones. The presence of amendment distributed by the shear thinning fluid in the low-permeability zones was increased. Foam delivery was shown to mitigate the mobilization of highly mobile contaminant from sediments. It also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.


Environmental Science & Technology | 2011

Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation.

Michael J. Truex; Tamzen W. Macbeth; Vincent R. Vermeul; Brad G. Fritz; Donaldo P. Mendoza; Rob D. Mackley; Thomas W. Wietsma; Greg Sandberg; Thomas Powell; Jeff Powers; Emile Pitre; Mandy M. Michalsen; Sage Ballock-Dixon; Lirong Zhong; Martinus Oostrom

The effectiveness of in situ treatment using zero-valent iron (ZVI) for nonaqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene (TCE) source area, combining moderate-temperature subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate TCE treatment by a factor of about 4 based on organic daughter products and a factor about 8 based on chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization processes at ambient groundwater temperature (~10 °C) and as temperature was increased up to about 50 °C. Increased reaction and contaminant dissolution were observed with increased temperature, but vapor- or aqueous-phase migration of TCE out of the treatment zone was minimal during the test because reactions maintained low aqueous-phase TCE concentrations.


Journal of Contaminant Hydrology | 2013

Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments

Jim E. Szecsody; Mike Truex; Nikolla P. Qafoku; Dawn M. Wellman; Tom Resch; Lirong Zhong

This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.


Journal of Hazardous Materials | 2015

Ammonia gas transport and reactions in unsaturated sediments: Implications for use as an amendment to immobilize inorganic contaminants

Lirong Zhong; James E. Szecsody; Michael J. Truex; Mark D. Williams; Yuanyuan Liu

Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has a potential for use in treating inorganic contaminants (such as uranium) because it induces a high pore-water pH, causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application of this treatment, further knowledge of ammonia transport in porous media and the geochemical reactions induced by ammonia treatment is needed. Laboratory studies were conducted to support calculations needed for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate inter-phase (gas/sediment/pore water) reactions, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions, such as flow rate, gas concentration, and water content. Uranium-contaminated sediment was treated with ammonia gas to demonstrate U immobilization. Ammonia gas quickly partitions into sediment pore water and increases the pH up to 13.2. Injected ammonia gas advection front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Sodium, aluminum, and silica pore-water concentrations increase upon exposure to ammonia and then decline as aluminosilicates precipitate when the pH declines due to buffering. Up to 85% of the water-leachable U was immobilized by ammonia treatment.


Radiochimica Acta | 2010

Uranium(VI) Diffusion in Low-Permeability Subsurface Materials

Chongxuan Liu; Lirong Zhong; John M. Zachara

Abstract Uranium(VI) diffusion was investigated in a fine-grained saprolite sediment that was collected from U.S. Department of Energy (DOE) Oak Ridge site, TN, where uranium contamination in groundwater is a major environmental concern. U(VI) diffusion was studied in a diffusion cell with one cell end in contact with a large, air-equilibrated electrolyte reservoir. The pH, carbonate and U(VI) concentrations in the reservoir solution were varied to investigate the effect of solution chemical composition and uranyl speciation on U(VI) diffusion. The rates of U(VI) diffusion were evaluated by monitoring the U(VI) concentration in the reservoir solution as a function of time; and by measuring the total concentration of U(VI) extracted from the sediment as a function of time and distance in the diffusion cells. The estimated apparent rate of U(VI) diffusion varied significantly with pH, with the slowest rate observed at pH 7 as a result of strong adsorptive retardation. The estimated retardation factor was generally consistent with a surface complexation model. Numerical simulations indicated that a species-based diffusion model that incorporated both aqueous and surface complexation reactions was required to describe U(VI) diffusion in the low permeability material under variable geochemical conditions. Our results implied that low permeability materials will play an important role in storing U(VI) and attenuating U(VI) plume migration at circumneutral pH conditions, and will serve as a long-term source for releasing U(VI) back to the nearby aquifer during and after aquifer decontamination.


Chemosphere | 2016

Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study.

Bin Wu; Huiying Li; Xiaoming Du; Lirong Zhong; Bin Yang; Ping Du; Qingbao Gu; Fasheng Li

During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.


Journal of Hazardous Materials | 2014

Model fit to experimental data for foam-assisted deep vadose zone remediation.

Alireza Roostapour; G. Lee; Lirong Zhong; Seung Ihl Kam

This study investigates how a foam model, developed in Roostapour and Kam [1], can be applied to make a fit to a set of existing laboratory flow experiments in an application relevant to deep vadose zone remediation. This study reveals a few important insights regarding foam-assisted deep vadose zone remediation: (i) the mathematical framework established for foam modeling can fit typical flow experiments matching wave velocities, saturation history, and pressure responses; (ii) the set of input parameters may not be unique for the fit, and therefore conducting experiments to measure basic model parameters related to relative permeability, initial and residual saturations, surfactant adsorption and so on should not be overlooked; and (iii) gas compressibility plays an important role for data analysis, thus should be handled carefully in laboratory flow experiments. Foam kinetics, causing foam texture to reach its steady-state value slowly, may impose additional complications.


Environmental Processes | 2014

Remedial Amendment Delivery Near the Water Table Using Shear Thinning Fluids: Experiments and Numerical Simulations

Martinus Oostrom; Michael J. Truex; Vincent R. Vermeul; Lirong Zhong; Guzel D. Tartakovsky; Thomas W. Wietsma

The use of non-Newtonian shear thinning fluids (STFs) containing xanthan is a potential enhancement for emplacing a solute amendment near the water table and within the capillary fringe. Most research to date related to STF behavior has involved saturated and confined conditions. A series of flow cell experiments were conducted to investigate STF emplacement in variable saturated homogeneous and layered heterogeneous systems. Besides flow visualization using dyes, amendment concentrations and pressure data were obtained at several locations. The experiments showed that injection of STFs considerably improved the subsurface distribution near the water table by mitigating preferential flow through higher permeability zones compared to no-polymer injections. The phosphate amendment migrated with the xanthan STF without retardation. Despite the high viscosity of the STF, no excessive mounding or preferential flow were observed in the unsaturated zone. The STOMP simulator was able to predict the experimentally observed fluid displacement and amendment concentrations well. Based on the observed pressure gradients and concentration data in layers of differing hydraulic conductivity, cross flow between layers was identified as the main mechanism transporting STFs into lower permeability layers.


Journal of Contaminant Hydrology | 2015

Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation

Lirong Zhong; Michael J. Truex; Negin Kananizadeh; Yusong Li; Alan S. Lea; Xiulan Yan

In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising type of substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and maintain good longevity. Because they are non-aqueous phase liquids, distribution of vegetable oils in the subsurface has typically been approached by creating emulsified oil solutions for injection into the aquifer. In this study, inexpensive waste vegetable oils were suspended in a shear-thinning xanthan gum solution as an alternative approach for delivery of vegetable oil to the subsurface. The stability, oil droplet size distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and the oil distribution in a porous medium were evaluated in column tests. Numerical modeling of oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil with xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into a porous medium. This study provides evidence that vegetable oil suspensions in xanthan gum solutions have favorable injection properties and are a potential substrate for in situ anaerobic bioremediation.

Collaboration


Dive into the Lirong Zhong's collaboration.

Top Co-Authors

Avatar

James E. Szecsody

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael J. Truex

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Martinus Oostrom

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark D. Williams

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nikolla P. Qafoku

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dawn M. Wellman

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jim E. Szecsody

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John M. Zachara

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chongxuan Liu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shas V. Mattigod

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge