Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa A. Opanashuk is active.

Publication


Featured researches published by Lisa A. Opanashuk.


Environmental Health Perspectives | 2006

Translocation of inhaled ultrafine manganese oxide particles to the central nervous system

Alison Elder; Robert Gelein; Vanessa D. Silva; Tessa Feikert; Lisa A. Opanashuk; Janet M. Carter; Russell M. Potter; Andrew D. Maynard; Yasuo Ito; Jacob N. Finkelstein; Günter Oberdörster

Background Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; < 100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb. Methods To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; ~ 500 μg/m3) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses. Results After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-α mRNA (~ 8-fold) and protein (~ 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was < 1.5% per day. Conclusions We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans.


Toxicological Sciences | 2008

2,3,7,8-Tetracholorodibenzo-p-Dioxin Exposure Disrupts Granule Neuron Precursor Maturation in the Developing Mouse Cerebellum

Loretta L. Collins; Mary A. Williamson; Bryan D. Thompson; Daniel P. Dever; Thomas A. Gasiewicz; Lisa A. Opanashuk

The widespread environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been linked to developmental neurotoxicity associated with abnormal cerebellar maturation in both humans and rodents. TCDD mediates toxicity via binding to the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of xenobiotic metabolizing enzymes and growth regulatory molecules. Our previous studies demonstrated that cerebellar granule neuron precursor cells (GNPs) express transcriptionally active AhR during critical developmental periods. TCDD exposure also impaired GNP proliferation and survival in vitro. Therefore, this study tested the hypothesis that TCDD exposure disrupts cerebellar development by interfering with GNP differentiation. In vivo experiments indicated that TCDD exposure on postnatal day (PND) 6 resulted in increased expression of a mitotic marker and increased thickness of the external granule layer (EGL) on PND10. Expression of the early differentiation marker TAG-1 was also more pronounced in postmitotic, premigratory granule neurons of the EGL, and increased apoptosis of GNPs was observed. On PND21, expression of the late GNP differentiation marker GABA(A alpha 6) receptor (GABAR(A alpha 6)) and total estimated cell numbers were both reduced following exposure on PND6. Studies in unexposed adult AhR(-/-) mice revealed lower GABAR(A alpha 6) levels and DNA content. In vitro studies showed elevated expression of the early differentiation marker p27/Kip1 and the GABAR(A alpha 6) in GNPs following TCDD exposure, and the expression patterns of proteins related to granule cell neurite outgrowth, beta III-tubulin and polysialic acid neural cell adhesion molecule, were consistent with enhanced neuroblast differentiation. Together, our data suggest that TCDD disrupts a normal physiological role of AhR, resulting in compromised GNP maturation and neuroblast survival, which impacts final cell number in the cerebellum.


Cancer Investigation | 2010

IGF-1 Partially Restores Chemotherapy-Induced Reductions in Neural Cell Proliferation in Adult C57BL/6 Mice

Michelle C. Janelsins; Joseph A. Roscoe; Michel J. Berg; Bryan D. Thompson; Mark J. Gallagher; Gary R. Morrow; Charles E. Heckler; Pascal Jean-Pierre; Lisa A. Opanashuk; Robert A. Gross

ABSTRACT Chemotherapeutic agents produce persistent difficulties in memory through an unknown mechanism. We tested the hypothesis that chemotherapeutic agents readily able to cross the blood–brain barrier (cyclophosphamide and fluorouracil), as opposed to those not known to readily cross the barrier (paclitaxel and doxorubicin), reduce neural cell proliferation following chemotherapy. We found that 5-bromo-2-deoxyuridine labeling following chemotherapy given to C57BL/6 mice revealed a similar reduction in neural cell proliferation in the dentate gyrus for all four agents. Insulin-like growth factor 1, a molecule implicated in promoting neurogenesis, counteracted the effects of high doses of chemotherapy on neural cell proliferation.


Journal of Neurochemistry | 2013

Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory.

Sarah E. Latchney; Amy M. Hein; M. Kerry O'Banion; Emanuel DiCicco-Bloom; Lisa A. Opanashuk

The aryl hydrocarbon receptor (AhR) is a ligand‐activated transcription factor that mediates the toxicity of dioxin and serves multiple developmental roles. In the adult brain, while we now localize AhR mRNA to nestin‐expressing neural progenitor cells in the dentate gyrus (DG) of the hippocampus, its function is unknown. This study tested the hypothesis that AhR participates in hippocampal neurogenesis and associated functions. AhR deletion and activation by the potent environmental toxicant, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD), adversely impacted neurogenesis and cognition. Adult AhR‐deficient mice exhibited impaired hippocampal‐dependent contextual fear memory while hippocampal‐independent memory remained intact. AhR‐deficient mice displayed reduced cell birth, decreased cell survival, and diminished neuronal differentiation in the DG. Following TCDD exposure, wild‐type mice exhibited impaired hippocampal‐dependent contextual memory, decreased cell birth, reduced neuronal differentiation, and fewer mature neurons in the DG. Glial differentiation and apoptosis were not altered in either TCDD‐exposed or AhR‐deficient mice. Finally, defects observed in TCDD‐exposed mice were dependent on AhR, as TCDD had no negative effects in AhR‐deficient mice. Our findings suggest that AhR should be further evaluated as a potential transcriptional regulator of hippocampal neurogenesis and function, although other sites of action may also warrant consideration. Moreover, TCDD exposure should be considered as an environmental risk factor that disrupts adult neurogenesis and potentially related memory processes.


Stem Cells and Development | 2011

Neural precursor cell proliferation is disrupted through activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Sarah E. Latchney; Daniel T. Lioy; Ellen C. Henry; Thomas A. Gasiewicz; Frederick G. Strathmann; Margot Mayer-Pröschel; Lisa A. Opanashuk

Neurogenesis involves the proliferation of multipotent neuroepithelial stem cells followed by differentiation into lineage-restricted neural precursor cells (NPCs) during the embryonic period. Interestingly, these progenitor cells express robust levels of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that regulates expression of genes important for growth regulation, and xenobiotic metabolism. Upon binding 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a pervasive environmental contaminant and potent AhR ligand, AhR, is activated and disrupts gene expression patterns to produce cellular toxicity. Because of its widespread distribution in the brain during critical proliferative phases of neurogenesis, it is conceivable that AhR participates in NPC expansion. Therefore, this study tested the hypothesis that AhR activation by TCDD disrupts signaling events that regulate NPC proliferation. The C17.2 NPC line served as a model system to (1) assess whether NPCs are targets for TCDD-induced neurotoxicity and (2) characterize the effects of TCDD on NPC proliferation. We demonstrated that C17.2 NPCs express an intact AhR signaling pathway that becomes transcriptionally active after TCDD exposure. (3)H-thymidine and alamar blue reduction assays indicated that TCDD suppresses NPC proliferation in a concentration-dependent manner without the loss of cell viability. Cell cycle distribution analysis by flow cytometry revealed that TCDD-induced growth arrest results from an impaired G1 to S cell cycle transition. Moreover, TCDD exposure altered p27( kip1) and cyclin D1 cell cycle regulatory protein expression levels consistent with a G1 phase arrest. Initial studies in primary NPCs isolated from the ventral forebrain of embryonic mice demonstrated that TCDD reduced cell proliferation through a G1 phase arrest, corroborating our findings in the C17.2 cell line. Together, these observations suggest that the inappropriate or sustained activation of AhR by TCDD during neurogenesis can interfere with signaling pathways that regulate neuroepithelial stem cell/NPC proliferation, which could adversely impact final cell number in the brain and lead to functional impairments.


Toxicological Sciences | 2012

Subchronic polychlorinated biphenyl (Aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems

Donna W. Lee; Sarah A. Notter; Mona Thiruchelvam; Daniel P. Dever; Richard Fitzpatrick; Paul J. Kostyniak; Deborah A. Cory-Slechta; Lisa A. Opanashuk

Recent epidemiologic studies have demonstrated a link between organochlorine and pesticide exposure to an enhanced risk for neurodegenerative disorders such as Parkinsons disease (PD). A common biological phenomenon underlying cell injury associated with both polychlorinated biphenyl (PCB) exposure and dopaminergic neurodegeneration during aging is oxidative stress (OS). In this study, we tested the hypothesis that oral PCB exposure, via food ingestion, impairs dopamine systems in the adult murine brain. We determined whether PCB exposure was associated with OS in dopaminergic neurons, a population of cells that selectively degenerate in PD. After 4 weeks of oral exposure to the PCB mixture Aroclor 1254, several congeners, mostly ortho substituted, accumulated throughout the brain. Significant increases in locomotor activity were observed within 2 weeks, which persisted after cessation of PCB exposure. Stereologic analyses revealed a significant loss of dopaminergic neurons within the substantia nigra and ventral tegmental area. However, striatal dopamine levels were elevated, suggesting that compensatory mechanisms exist to maintain dopamine homeostasis, which could contribute to the observed increases in locomotor activity following PCB exposure. Biochemical experiments revealed alterations in OS markers, including increases in SOD and HO-1 levels and the presence of oxidatively modified lipids and proteins. These findings were accompanied by elevated iron levels within the striatal and midbrain regions, perhaps due to the observed dysregulation of transferrin receptors and ferritin levels following PCB exposure. In this study, we suggest that both OS and the uncoupling of iron regulation contribute to dopamine neuron degeneration and hyperactivity following PCB exposure.


Molecular Pharmacology | 2012

The Aryl Hydrocarbon Receptor Contributes to the Proliferation of Human Medulloblastoma Cells

Daniel P. Dever; Lisa A. Opanashuk

The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic helix-loop-helix (bHLH)/PER-ARNT-SIM (PAS) transcription superfamily, is known to regulate the toxicity of polyaromatic halogenated hydrocarbon environmental chemicals, most notably dioxin. However, the AhR has also been implicated in multiple stages of tumorigenesis. Medulloblastoma (MB), a primary cerebellar brain tumor arising in infants and children, is thought to originate from abnormally proliferating cerebellar granule neuron precursors (GNPs). GNPs express high levels of the AhR in the external germinal layer of the developing cerebellum. Moreover, our laboratory has previously reported that either abnormal activation or deletion of the AhR leads to dysregulation of GNP cell cycle activity and maturation. These observations led to the hypothesis that the AhR promotes the growth of MB. Therefore, this study evaluated whether the AhR serves a pro-proliferative role in an immortalized MB tumor cell line (DAOY). We produced a stable AhR knockdown DAOY cell line [AhR short hairpin RNA (shRNA)], which exhibited a 70% reduction in AhR protein levels. Compared with wild-type DAOY cells, AhR shRNA DAOY cells displayed an impaired G1-to-S cell cycle transition, decreased DNA synthesis, and reduced proliferation. Furthermore, these cell cycle perturbations were correlated with decreased levels of the pro-proliferative gene Hes1 and increased levels of the cell cycle inhibitor p27kip1. Supplementation experiments with human AhR restored the proliferative activity in AhR shRNA DAOY cells. Taken together, our data show that the AhR promotes proliferation of MB cells, suggesting that this pathway should be considered as a potential therapeutic target for MB treatment.


Journal of Molecular Biology | 2012

Turn nucleation perturbs amyloid β self-assembly and cytotoxicity.

Todd M. Doran; Elizabeth A. Anderson; Sarah E. Latchney; Lisa A. Opanashuk; Bradley L. Nilsson

The accumulation of senile plaques composed of amyloid β (Aβ) fibrils is a hallmark of Alzheimers disease, although prefibrillar oligomeric species are believed to be the primary neurotoxic congeners in the pathogenesis of Alzheimers disease. Uncertainty regarding the mechanistic relationship between Aβ oligomer and fibril formation and the cytotoxicity of these aggregate species persists. β-Turn formation has been proposed to be a potential rate-limiting step during Aβ fibrillogenesis. The effect of turn nucleation on Aβ self-assembly was probed by systematically replacing amino acid pairs in the putative turn region of Aβ (residues 24-27) with d-ProGly ((D)PG), an effective turn-nucleating motif. The kinetic, thermodynamic, and cytotoxic effects of these mutations were characterized. It was found that turn formation dramatically accelerated Aβ fibril self-assembly dependent on the site of turn nucleation. The cytotoxicity of the three (D)PG-containing Aβ variants was significantly lower than that of wild-type Aβ40, presumably due to decreased oligomer populations as a function of a more rapid progression to mature fibrils; oligomer populations were not eliminated, however, suggesting that turn formation is also a feature of oligomer structures. These results indicate that turn nucleation is a critical step in Aβ40 fibril formation.


Neurotoxicology | 2015

Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation.

Sarah E.A. McConnell; M. Kerry O’Banion; Deborah A. Cory-Slechta; John A. Olschowka; Lisa A. Opanashuk

Methamphetamine (MA) is a potent, highly addictive psychostimulant abused by millions of people worldwide. MA induces neurotoxicity, damaging striatal dopaminergic terminals, and neuroinflammation, with striatal glial activation leading to pro-inflammatory cytokine and reactive oxygen species production. It is unclear whether MA-induced neuroinflammation contributes to MA-induced neurotoxicity. In the current study, we examined the linkage between the time course and dose response of MA-induced neurotoxicity and neuroinflammation. Adult male mice underwent a binge dosing regimen of four injections given every 2h with doses of 2, 4, 6, or 8 mg/kg MA per injection, and were sacrificed after 1, 3, 7, or 14 days. Binge MA treatment dose-dependently caused hyperthermia and induced hypoactivity after one day, though activity returned to control levels within one week. Striatal dopamine (DA) was diminished one day after treatment with at least 4 mg/kg MA, while DA turnover rates peaked after seven days. Although striatal tyrosine hydroxylase and DA transporter levels were also decreased one day after treatment with at least 4 mg/kg MA, they trended toward recovery by day 14. All doses of MA activated striatal glia within one day. While astrocyte activation persisted, microglial activation was attenuated over the two weeks of the study. These findings help clarify the relationship between MA-induced neuroinflammation and neurotoxicity, particularly regarding their temporal and dose-specific dynamics.


ACS Chemical Neuroscience | 2012

An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly.

Todd M. Doran; Elizabeth A. Anderson; Sarah E. Latchney; Lisa A. Opanashuk; Bradley L. Nilsson

Amyloid-β (Aβ) self-assembly into cross-β amyloid fibrils is implicated in a causative role in Alzheimers disease pathology. Uncertainties persist regarding the mechanisms of amyloid self-assembly and the role of metastable prefibrillar aggregates. Aβ fibrils feature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the self-assembly pathway. Herein, we report the use of an azobenzene β-hairpin mimetic to study the role turn nucleation plays on Aβ self-assembly. [3-(3-Aminomethyl)phenylazo]phenylacetic acid (AMPP) was incorporated into the putative turn region of Aβ42 to elicit temporal control over Aβ42 turn nucleation; it was hypothesized that self-assembly would be favored in the cis-AMPP conformation if β-hairpin formation occurs during Aβ self-assembly and that the trans-AMPP conformer would display attenuated fibrillization propensity. It was unexpectedly observed that the trans-AMPP Aβ42 conformer forms fibrillar constructs that are similar in almost all characteristics, including cytotoxicity, to wild-type Aβ42. Conversely, the cis-AMPP Aβ42 congeners formed nonfibrillar, amorphous aggregates that exhibited no cytotoxicity. Additionally, cis-trans photoisomerization resulted in rapid formation of native-like amyloid fibrils and trans-cis conversion in the fibril state reduced the population of native-like fibrils. Thus, temporal photocontrol over Aβ turn conformation provides significant insight into Aβ self-assembly. Specifically, Aβ mutants that adopt stable β-turns form aggregate structures that are unable to enter folding pathways leading to cross-β fibrils and cytotoxic prefibrillar intermediates.

Collaboration


Dive into the Lisa A. Opanashuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna W. Lee

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles E. Heckler

University of Rochester Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge