Lisa A. Peterson
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa A. Peterson.
Nature | 2009
Julie L. Tubbs; Vitaly Latypov; Sreenivas Kanugula; Amna Butt; Manana Melikishvili; Rolf Kraehenbuehl; Oliver Fleck; Andrew S. Marriott; Amanda J. Watson; Barbara Verbeek; Gail McGown; Mary Thorncroft; Mauro Santibanez-Koref; Christopher L. Millington; Andrew S. Arvai; Matthew D Kroeger; Lisa A. Peterson; David M. Williams; Michael Fried; Geoffrey P. Margison; Anthony E. Pegg; John A. Tainer
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O6-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O6-methylguanine or cigarette-smoke-derived O6-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.
Chemical Research in Toxicology | 2013
Lisa A. Peterson
Many xenobiotics containing a furan ring are toxic and/or carcinogenic. The harmful effects of these compounds require furan ring oxidation. This reaction generates an electrophilic intermediate. Depending on the furan ring substituents, the intermediate is either an epoxide or a cis-enedione with more ring substitution favoring epoxide formation. Either intermediate reacts with cellular nucleophiles such as protein or DNA to trigger toxicities. The reactivity of the metabolite determines which cellular nucleophiles are targeted. The toxicity of a particular furan is also influenced by the presence of competing metabolic pathways or efficient detoxification routes. GSH plays an important role in modulating the harmful effects of this class of compound by reacting with the reactive metabolite. However, this may not represent a detoxification step in all cases.
Drug Metabolism and Disposition | 2005
Lisa A. Peterson; Meredith E. Cummings; Choua C. Vu; Brock Matter
Furan is a liver carcinogen and toxicant. Furan is oxidized to the reactive dialdehyde, cis-2-butene-1,4-dial, by microsomal enzymes. This reactive metabolite readily reacts with glutathione nonenzymatically to form conjugates. A high-performance liquid chromatography-electrochemical method for the detection of cis-2-butene-1,4-dial-glutathione (GSH) conjugates in microsomal preparations was developed to measure the extent of furan metabolism to cis-2-butene-1,4-dial in vitro. Previously unobserved mono-GSH reaction products of cis-2-butene-1,4-dial were detected in addition to the already characterized bis-GSH conjugates. Chemical characterization of these compounds indicated that the α-amino group of glutathione had reacted with cis-2-butene-1,4-dial to form a thiol-substituted pyrrole adduct. The analytical method was used to estimate the extent of furan oxidation in rat liver microsomes from untreated or acetone-pretreated F344 rats as well as in human P450 2E1 Supersomes. Our results confirm that cytochrome P450 2E1 can catalyze the oxidation of furan to cis-2-butene-1,4-dial. However, the data are also consistent with the involvement of other P450 enzymes in the oxidation of furan in untreated animals. This assay will be a valuable tool to explore tissue and species differences in rates of furan oxidation.
Drug Metabolism Reviews | 2006
Lisa A. Peterson
The industrial and environmental chemical, furan, is a liver toxicant and carcinogen in laboratory animals. It has been classified as a possible human carcinogen. The mechanism of tumor induction is unknown. However, toxicity is initiated by cytochrome P450 catalyzed oxidation of furan to an α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial. This metabolite reacts readily with protein and DNA nucleophiles and is a bacterial mutagen in Ames assay strain TA104. Metabolism studies indicate that this reactive metabolite is formed in vivo. It is also an intermediate leading to other metabolites whose role in furan-derived toxicities has yet to be explored.
Chemical Research in Toxicology | 2010
Ding Lu; Lisa A. Peterson
Furan is a rodent hepatotoxicant and carcinogen. Because this compound is an important industrial intermediate and has been detected in heat-processed foods and smoke, humans are likely exposed to this toxic compound. Characterization of urinary metabolites of furan will lead to the development of biomarkers to assess human health risks associated with furan exposure. Previous studies indicate that furan is oxidized to a reactive alpha,beta-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA), in a reaction catalyzed by cytochrome P450. Five previously characterized metabolites are derived from the reaction of BDA with cellular nucleophiles such as glutathione and protein. They include the monoglutathione reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide, and its downstream metabolite, S-[1-(1,3-dicarboxypropyl)-1H-pyrrol-3-yl]methylthiol, as well as (R)-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid and N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine and its sulfoxide. The last two compounds are downstream metabolites of a BDA-derived cysteine-lysine cross-link, S-[1-(5-amino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine. In this report, we present the characterization of seven additional urinary furan metabolites, all of which are derived from this cross-link. The cysteinyl residue is subject to several biotransformation reactions, including N-acetylation and S-oxidation. Alternatively, it can undergo beta-elimination followed by S-methylation to a methylthiol intermediate that is further oxidized to a sulfoxide. The lysine portion of the cross-link either is N-acetylated or undergoes a transamination reaction to generate an alpha-ketoacid metabolite that undergoes oxidative decarboxylation. Some of these metabolites are among the most abundant furan metabolites present in urine as judged by LC-MS/MS analysis, indicating that the oxidation of furan to BDA and BDAs subsequent reaction with cellular cysteine and lysine residues may represent a significant in vivo pathway of furan biotransformation. Because they are derived from cellular BDA reaction products, these metabolites are markers of furan exposure and bioactivation and could be explored as potential biomarkers in human studies.
Chemical Research in Toxicology | 2009
Ding Lu; Mathilde M. Sullivan; Martin B. Phillips; Lisa A. Peterson
Furan is a liver toxicant and carcinogen in rodents. On the basis of these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450-catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids, and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a monoglutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized as follows: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine, and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from the reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the epsilon-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the alpha- and the epsilon-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the epsilon-amino group of lysine. A GSH-BDA-lysine cross-link was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the epsilon-amino group of lysine; however, small amounts of the alpha-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates, which then react with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo.
Cancer Research | 2006
Renée S. Mijal; Sreenivas Kanugula; Choua C. Vu; Qingming Fang; Anthony E. Pegg; Lisa A. Peterson
The repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) protects cells from the mutagenic and carcinogenic effects of alkylating agents by removing O(6)-alkylguanine adducts from DNA. Recently, we established that AGT protects against the mutagenic effects of pyridyloxobutylation resulting from the metabolic activation of the tobacco-specific nitrosamines (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine by repairing O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-pobG). There have been several epidemiologic studies examining the association between the I143V/K178R AGT genotype and lung cancer risk. Two studies have found positive associations, suggesting that AGT proteins differ in their repair of DNA damage caused by TSNA. However, it is not known how this genotype alters the biochemical activity of AGT. We proposed that AGT proteins may differ in their ability to remove large O(6)-alkylguanine adducts, such as O(6)-pobG, from DNA. Therefore, we examined the repair of O(6)-pobG by wild-type (WT) human, I143V/K178R, and L84F AGT proteins when contained in multiple sequence contexts, including the twelfth codon of H-ras, a mutational hotspot within this oncogene. The AGT-mediated repair of O(6)-pobG was more profoundly influenced by sequence context than that of O(6)-methylguanine. These differences are not the result of secondary structure (hairpin) formation in DNA. In addition, the I143V/K178R variant seems less sensitive to the effects of sequence context than the WT or L84F proteins. These studies indicate that the sequence dependence of O(6)-pobG repair by human AGT (hAGT) varies with subtle changes in protein structure. These data establish a novel functional difference between the I143V/K178R protein and other hAGTs in the repair of a toxicologically relevant substrate, O(6)-pobG.
Journal of Toxicology and Environmental Health | 1999
Mark A. Morse; Jerry Lu; Gary D. Stoner; Sharon E. Murphy; Lisa A. Peterson
N-Nitrosobenzylmethylamine (NBzMA) is a potent esophageal carcinogen in rodents, and has been found as a dietary contaminant in certain areas of China where esophageal cancer is endemic. To determine which cytochrome P-450 enzymes in humans are primarily responsible for NBzMA metabolism, microsomes from lymphoblastoid cell lines expressing a panel of human cytochrome P-450s (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP2C9, CYP2C19, and CYP3A4) and a panel of 10 different human liver microsomal preparations were examined for their abilities to metabolize [3H]NBzMA. In addition, the ability of human liver microsomes to form various NBzMA metabolites was correlated with the abilities of these preparations to metabolize coumarin, ethoxyresorufin, chlorzoxazone, 7-ethoxy-4-trifluoromethylcoumarin, S-mephenytoin, and nifedipine. NBzMA metabolites were quantitated by reversed-phase high-performance liquid chromatography (HPLC) coupled with flow-through radioactivity detection. Major metabolites included benzaldehyde, benzyl alcohol, benzoic acid, and several uncharacterized radioactive peaks. Of the representative P-450 activities, only CYP2E1 and CYP2A6 catalyzed substantial metabolism of NBzMA. Compared to CYP2E1, CYP2A6 metabolized NBzMA more readily. NBzMA acted as a potent inhibitor of coumarin 7-hydroxylation in CYP2A6 microsomes. Human liver microsomes metabolized NBzMA readily. NBzMA metabolite formation was most highly correlated with coumarin 7-hydroxylase activity, a marker of CYP2A6 activity. 8-Methoxypsoralen substantially inhibited NBzMA metabolism in human hepatic microsomes. When the effects of the potent isothiocyanates PEITC and PHITC were analyzed on microsomes from cell lines expressing CYP2E1 and CYP2A6, it was found that PEITC inhibited both enzymes, PHITC was the more effective inhibitor of CYP2E1, and PHITC was an ineffective inhibitor of CYP2A6. Collectively, these data indicate that CYP2A6 and, to a lesser degree, CYP2E1 are important P-450 enzymes in the activation of NBzMA in human systems.
Drug Metabolism and Disposition | 2012
Leah A. Gates; Ding Lu; Lisa A. Peterson
Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furans toxic effects.
Nutrition and Cancer | 1996
Karam El-Bayoumy; Bogdan Prokopczyk; Lisa A. Peterson; Dhimant Desai; Shantu Amin; Bandaru S. Reddy; Dietrich Hoffmann; Ernst L. Wynder
The available data support the concept that high-fat diets increase cytochrome P-450 activities in the liver, leading to increased rates of carcinogen metabolism and, in some instances, DNA adduct formation. Therefore we investigated whether a high-fat diet can also influence DNA methylation by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in the lungs of rats. Male F344 rats were fed a regular AIN-76A low-fat (5% corn oil) or AIN-76A high-fat (23.5% corn oil) diet. After three weeks on this dietary regimen, the animals were injected subcutaneously once daily for four days with NNK at 0.39 mmol/kg body wt. Groups of rats were sacrificed 4 and 24 hours after the last NNK administration; livers and lungs were excised for DNA isolation. We found that the high-fat diet significantly enhanced the formation of O6-methylguanine (O6-mGua) in the rat lung four hours (p < 0.01) after the last carcinogen administration. This may, in part, account for our previous finding in regard to the enhancing effect of the high-fat diet on NNK-induced lung carcinogenesis. There was no effect on O6-mGua or 7-mGua in the rat liver at either time point. To further elucidate the enhancing effect of the high-fat diet on DNA methylation by NNK in the lung, we determined its effect on the in vitro and in vivo metabolism of NNK. The in vitro data indicated that dietary fat has no measurable effect on liver and lung microsomal mixed-function oxidase in catalyzing the metabolic activation of NNK. The results of the metabolism study of NNK in vivo appear to be consistent with the in vitro finding, in that fat had no effect on the excretion pattern of NNK or on the distribution pattern of its urinary metabolites. It is apparent that the enhancing effect of the high-fat diet on O6-mGua in the lung of rats that was measured four hours after NNK injection requires future investigations.