Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa B. Frankel is active.

Publication


Featured researches published by Lisa B. Frankel.


Journal of Biological Chemistry | 2008

Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells.

Lisa B. Frankel; Nanna R. Christoffersen; Anders Jacobsen; Morten Lindow; Anders Krogh; Anders H. Lund

MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21 and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells.


Cell Death & Differentiation | 2010

p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC

Nanna R. Christoffersen; Reut Shalgi; Lisa B. Frankel; Eleonora Leucci; Michael Lees; M Klausen; Yitzhak Pilpel; Finn Cilius Nielsen; Moshe Oren; Anders H. Lund

Aberrant oncogene activation induces cellular senescence, an irreversible growth arrest that acts as a barrier against tumorigenesis. To identify microRNAs (miRNAs) involved in oncogene-induced senescence, we examined the expression of miRNAs in primary human TIG3 fibroblasts after constitutive activation of B-RAF. Among the regulated miRNAs, both miR-34a and miR-146a were strongly induced during senescence. Although members of the miR-34 family are known to be transcriptionally regulated by p53, we find that miR-34a is regulated independently of p53 during oncogene-induced senescence. Instead, upregulation of miR-34a is mediated by the ETS family transcription factor, ELK1. During senescence, miR-34a targets the important proto-oncogene MYC and our data suggest that miR-34a thereby coordinately controls a set of cell cycle regulators. Hence, in addition to its integration in the p53 pathway, we show that alternative cancer-related pathways regulate miR-34a, emphasising its significance as a tumour suppressor.


The EMBO Journal | 2011

microRNA-101 is a potent inhibitor of autophagy

Lisa B. Frankel; Jiayu Wen; Michael Lees; Maria Høyer-Hansen; Thomas Farkas; Anders Krogh; Marja Jäättelä; Anders H. Lund

Autophagy is an evolutionarily conserved mechanism of cellular self‐digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer. To further elucidate regulatory mechanisms of autophagy, we performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR‐101, as a potent inhibitor of basal, etoposide‐ and rapamycin‐induced autophagy. Through transcriptome profiling, we identified three novel miR‐101 targets, STMN1, RAB5A and ATG4D. siRNA‐mediated depletion of these genes phenocopied the effect of miR‐101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR‐101‐mediated inhibition of autophagy, indicating a functional importance for this target. Finally, we show that miR‐101‐mediated inhibition of autophagy can sensitize breast cancer cells to 4‐hydroxytamoxifen (4‐OHT)‐mediated cell death. Collectively, these data establish a novel link between two highly important and rapidly growing research fields and present a new role for miR‐101 as a key regulator of autophagy.


Carcinogenesis | 2012

MicroRNA regulation of autophagy.

Lisa B. Frankel; Anders H. Lund

Macroautophagy (hereafter referred to as autophagy) is a tightly regulated intracellular catabolic pathway involving the lysosomal degradation of cytoplasmic organelles and proteins. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is responsible for the delivery of cytoplasmic cargo to the lysosomes. Autophagy levels are constantly changing, allowing adaptation to both immediate and long-term needs of the cell, underlining why tight control of this process is essential in order to prevent the development of pathological disorders. Substantial progress has recently contributed to our understanding of the molecular mechanisms of the autophagy machinery, yet several gaps remain in our knowledge of this process. The discovery of microRNAs (miRNAs) established a new paradigm of post-transcriptional gene regulation and during the past decade these small non-coding RNAs have been closely linked to virtually all known fundamental biological pathways. Deregulation of miRNAs can contribute to the development of human diseases, including cancer, where they can function as bona fide oncogenes or tumor suppressors. In this review, we highlight recent advances linking miRNAs to regulation of the autophagy pathway. This regulation occurs both through specific core pathway components as well as through less well-defined mechanisms. Although this field is still in its infancy, we are beginning to understand the potential implications of these initial findings, both from a pathological perspective, but also from a therapeutic view, where miRNAs can be harnessed experimentally to alter autophagy levels in human tumors, affecting parameters such as tumor survival and treatment sensitivity.


PLOS ONE | 2010

MicroRNA-145 Targets YES and STAT1 in Colon Cancer Cells

Lea H. Gregersen; Anders Jacobsen; Lisa B. Frankel; Jiayu Wen; Anders Krogh; Anders H. Lund

Background MicroRNAs (miRNAs) have emerged as important gene regulators and are recognized as key players in tumorigenesis. miR-145 is reported to be down-regulated in several cancers, but knowledge of its targets in colon cancer remains limited. Methodology/Principal Findings To investigate the role of miR-145 in colon cancer, we have employed a microarray based approach to identify miR-145 targets. Based on seed site enrichment analyses and unbiased word analyses, we found a significant enrichment of miRNA binding sites in the 3′-untranslated regions (UTRs) of transcripts down-regulated upon miRNA overexpression. Gene Ontology analysis showed an overrepresentation of genes involved in cell death, cellular growth and proliferation, cell cycle, gene expression and cancer. A number of the identified miRNA targets have previously been implicated in cancer, including YES, FSCN1, ADAM17, BIRC2, VANGL1 as well as the transcription factor STAT1. Both YES and STAT1 were verified as direct miR-145 targets. Conclusions/Significance The study identifies and validates new cancer-relevant direct targets of miR-145 in colon cancer cells and hereby adds important mechanistic understanding of the tumor-suppressive functions of miR-145.


Journal of Virology | 2007

Small Interfering RNAs against the TAR RNA Binding Protein, TRBP, a Dicer Cofactor, Inhibit Human Immunodeficiency Virus Type 1 Long Terminal Repeat Expression and Viral Production

Helen S. Christensen; Aı̈cha Daher; Kaitlin J. Soye; Lisa B. Frankel; Marina R. Alexander; Sébastien Lainé; Sylvie Bannwarth; Chi L. Ong; Sean W. L. Chung; Shahan M. Campbell; Damian F. J. Purcell; Anne Gatignol

ABSTRACT RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.


Nature Communications | 2014

A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder

Lisa B. Frankel; Chiara Di Malta; Jiayu Wen; Eeva-Liisa Eskelinen; Andrea Ballabio; Anders H. Lund

Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity is deficient due to mutations in the sulfatase-modifying factor 1 (SUMF1) gene, encoding the essential activator of all sulfatases. We identify a novel regulatory layer of sulfate metabolism mediated by a microRNA. miR-95 depletes SUMF1 protein levels and suppresses sulfatase activity, causing the disruption of proteoglycan catabolism and lysosomal function. This blocks autophagy-mediated degradation, causing cytoplasmic accumulation of autophagosomes and autophagic substrates. By targeting miR-95 in cells from MSD patients, we can effectively increase residual SUMF1 expression, allowing for reactivation of sulfatase activity and increased clearance of sulfated GAGs. The identification of this regulatory mechanism opens the opportunity for a unique therapeutic approach in MSD patients where the need for exogenous enzyme replacement is circumvented.


Autophagy | 2017

Emerging connections between RNA and autophagy

Lisa B. Frankel; Michal Lubas; Anders H. Lund

ABSTRACT Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.


EMBO Reports | 2018

eIF5A is required for autophagy by mediating ATG3 translation

Michal Lubas; Lea M. Harder; Caroline Kumsta; Imke Tiessen; Malene Hansen; Jens S. Andersen; Anders H. Lund; Lisa B. Frankel

Autophagy is an essential catabolic process responsible for recycling of intracellular material and preserving cellular fidelity. Key to the autophagy pathway is the ubiquitin‐like conjugation system mediating lipidation of Atg8 proteins and their anchoring to autophagosomal membranes. While regulation of autophagy has been characterized at the level of transcription, protein interactions and post‐translational modifications, its translational regulation remains elusive. Here we describe a role for the conserved eukaryotic translation initiation factor 5A (eIF5A) in autophagy. Identified from a high‐throughput screen, we find that eIF5A is required for lipidation of LC3B and its paralogs and promotes autophagosome formation. This feature is evolutionarily conserved and results from the translation of the E2‐like ATG3 protein. Mechanistically, we identify an amino acid motif in ATG3 causing eIF5A dependency for its efficient translation. Our study identifies eIF5A as a key requirement for autophagosome formation and demonstrates the importance of translation in mediating efficient autophagy.


Oncogenesis | 2018

Let-7 microRNA controls invasion-promoting lysosomal changes via the oncogenic transcription factor myeloid zinc finger-1

Siri A. Tvingsholm; Malene Hansen; Knut Kristoffer Bundgaard Clemmensen; Ditte Marie Brix; Bo Rafn; Lisa B. Frankel; Riku Louhimo; José M. A. Moreira; Sampsa Hautaniemi; Irina Gromova; Marja Jäättelä; Tuula Kallunki

Cancer cells utilize lysosomes for invasion and metastasis. Myeloid Zinc Finger1 (MZF1) is an ErbB2-responsive transcription factor that promotes invasion of breast cancer cells via upregulation of lysosomal cathepsins B and L. Here we identify let-7 microRNA, a well-known tumor suppressor in breast cancer, as a direct negative regulator of MZF1. Analysis of primary breast cancer tissues reveals a gradual upregulation of MZF1 from normal breast epithelium to invasive ductal carcinoma and a negative correlation between several let-7 family members and MZF1 mRNA, suggesting that the inverse regulatory relationship between let-7 and MZF1 may play a role in the development of invasive breast cancer. Furthermore, we show that MZF1 regulates lysosome trafficking in ErbB2-positive breast cancer cells. In line with this, MZF1 depletion or let-7 expression inhibits invasion-promoting anterograde trafficking of lysosomes and invasion of ErbB2-expressing MCF7 spheres. The results presented here link MZF1 and let-7 to lysosomal processes in ErbB2-positive breast cancer cells that in non-cancerous cells have primarily been connected to the transcription factor EB. Identifying MZF1 and let-7 as regulators of lysosome distribution in invasive breast cancer cells, uncouples cancer-associated, invasion-promoting lysosomal alterations from normal lysosomal functions and thus opens up new possibilities for the therapeutic targeting of cancer lysosomes.

Collaboration


Dive into the Lisa B. Frankel's collaboration.

Top Co-Authors

Avatar

Anders H. Lund

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Anders Krogh

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Anders Jacobsen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jiayu Wen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens S. Andersen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge